www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - ggT und kgV
ggT und kgV < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ggT und kgV: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:52 Di 28.07.2009
Autor: ms2008de

Aufgabe
Beweisen Sie folgende Gleichung:
[mm] (a\IZ [/mm] + [mm] b\IZ)\cap c\IZ [/mm] = ggT(kgV(a,c), [mm] kgV(b,c))\IZ, \forall [/mm] a,b,c [mm] \in \IZ [/mm]

Hallo,
hab ziemliche Schwierigkeiten hier mal einen Ansatz zu finden, aber bin mir ziemlich sicher, dass folgendes gelten muss:
[mm] (a\IZ [/mm] + [mm] b\IZ)\cap c\IZ =(ggT(a,b)\IZ)\cap c\IZ [/mm] = [mm] kgV(ggT(a,b),c)\IZ [/mm] .
Aber wie komm ich von dem hier auf die rechte Seite, weiß vor allem nicht, ob man die rechte Seite irgendwie umformen kann.
Hilft mir vllt., dass in [mm] \IZ [/mm] gilt: ggT(a,b)*kgV(a,b)= [mm] \pm [/mm] (a*b)?
Hoffe mir kann jmd. weiterhelfen, wäre um jede Hilfe dankbar.

Viele Grüße

        
Bezug
ggT und kgV: Antwort
Status: (Antwort) fertig Status 
Datum: 10:30 Di 28.07.2009
Autor: statler

Hi!

> Beweisen Sie folgende Gleichung:
>  [mm](a\IZ[/mm] + [mm]b\IZ)\cap c\IZ[/mm] = ggT(kgV(a,c), [mm]kgV(b,c))\IZ, \forall[/mm]
> a,b,c [mm]\in \IZ[/mm]

>  hab ziemliche Schwierigkeiten hier mal einen Ansatz zu
> finden,

Möglicher Ansatz: Da du in [mm] \IZ [/mm] bist, stehen auf beiden Seiten Hauptideale. Jetzt sei die linke Seite $= [mm] m*\IZ$. [/mm] p sei eine beliebige Primzahl, die in a, b und c mit den Exponenten r, s und t vorkomme. Mit welchem Exponenten kommt sie dann in m vor?
Und dann die gleiche Untersuchung für die rechte Seite. Wenn die Exponenten übereinstimmen, bist du fertig, wenn nicht, stimmt die Behauptung nicht.

Gruß aus HH-Harburg
Dieter


Bezug
                
Bezug
ggT und kgV: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:57 Di 28.07.2009
Autor: ms2008de


> Hi!


>
> Möglicher Ansatz: Da du in [mm]\IZ[/mm] bist, stehen auf beiden
> Seiten Hauptideale. Jetzt sei die linke Seite [mm]= m*\IZ[/mm]. p
> sei eine beliebige Primzahl, die in a, b und c mit den
> Exponenten r, s und t vorkomme. Mit welchem Exponenten
> kommt sie dann in m vor?

Also, wenn meine vorige Umformung gestimmt hat, müsste der Exponent von m: max [mm] \{min\{r,s\}, t\} [/mm] sein

>  Und dann die gleiche Untersuchung für die rechte Seite.

Da komme ich jedoch auf [mm] min\{max\{r,t\}, max\{s,t\}\}, [/mm] und wieso sollte das nun das selbe sein? Was hab ich falsch gemacht?

> Wenn die Exponenten übereinstimmen, bist du fertig, wenn
> nicht, stimmt die Behauptung nicht.

Viele Grüße

Bezug
                        
Bezug
ggT und kgV: Antwort
Status: (Antwort) fertig Status 
Datum: 11:32 Di 28.07.2009
Autor: statler

Mahlzeit!

> > Möglicher Ansatz: Da du in [mm]\IZ[/mm] bist, stehen auf beiden
> > Seiten Hauptideale. Jetzt sei die linke Seite [mm]= m*\IZ[/mm]. p
> > sei eine beliebige Primzahl, die in a, b und c mit den
> > Exponenten r, s und t vorkomme. Mit welchem Exponenten
> > kommt sie dann in m vor?
>  Also, wenn meine vorige Umformung gestimmt hat, müsste
> der Exponent von m: max [mm]\{min\{r,s\}, t\}[/mm] sein
>  >  Und dann die gleiche Untersuchung für die rechte
> Seite.
> Da komme ich jedoch auf [mm]min\{max\{r,t\}, max\{s,t\}\},[/mm] und
> wieso sollte das nun das selbe sein? Was hab ich falsch
> gemacht?

Du kannst jetzt oBdA min(r,s) = r annehmen, warum? Dann gibt es für t 3 mögliche Lagen: davor, dazwischen, dahinter. Probier einfach mal alles durch.

Gruß
Dieter


Bezug
                                
Bezug
ggT und kgV: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:59 Di 28.07.2009
Autor: ms2008de


> Mahlzeit!
>  
> > > Möglicher Ansatz: Da du in [mm]\IZ[/mm] bist, stehen auf beiden
> > > Seiten Hauptideale. Jetzt sei die linke Seite [mm]= m*\IZ[/mm]. p
> > > sei eine beliebige Primzahl, die in a, b und c mit den
> > > Exponenten r, s und t vorkomme. Mit welchem Exponenten
> > > kommt sie dann in m vor?
>  >  Also, wenn meine vorige Umformung gestimmt hat, müsste
> > der Exponent von m: max [mm]\{min\{r,s\}, t\}[/mm] sein
>  >  >  Und dann die gleiche Untersuchung für die rechte
> > Seite.
> > Da komme ich jedoch auf [mm]min\{max\{r,t\}, max\{s,t\}\},[/mm] und
> > wieso sollte das nun das selbe sein? Was hab ich falsch
> > gemacht?
>  
> Du kannst jetzt oBdA min(r,s) = r annehmen, warum? Dann
> gibt es für t 3 mögliche Lagen: davor, dazwischen,
> dahinter. Probier einfach mal alles durch.

Vielen Dank schonmal bisher.
Okay, soweit hab ich nun alles hinbekommen, aber was passiert denn nun mit den Primzahlen, die nicht in a,b, und c gleichzeitig vorkommen, sondern z.B. nur in c oder eben nur in a und c aber nicht in b? Das is mir noch unklar. Setze ich da, wo sie nicht vorkommen, einfach den Exponenten auf 0, das wär noch das logischste?

Viele Grüße

Bezug
                                        
Bezug
ggT und kgV: Antwort
Status: (Antwort) fertig Status 
Datum: 12:06 Di 28.07.2009
Autor: statler


>  Okay, soweit hab ich nun alles hinbekommen, aber was
> passiert denn nun mit den Primzahlen, die nicht in a,b, und
> c gleichzeitig vorkommen, sondern z.B. nur in c oder eben
> nur in a und c aber nicht in b? Das is mir noch unklar.
> Setze ich da, wo sie nicht vorkommen, einfach den
> Exponenten auf 0, das wär noch das logischste?

Den setzt du nicht auf 0, sondern der ist = 0.

Gruß
Dieter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de