www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - ggt (...) = ggt (...) beweisen
ggt (...) = ggt (...) beweisen < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ggt (...) = ggt (...) beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:41 Fr 09.04.2010
Autor: Schapka

Aufgabe
Beweisen Sie für nat. Zahlen a,b [mm] \ge [/mm] 1

ggT ( [mm] \bruch{a}{ggt(a,b)} [/mm] , b ) = ggT ( a , [mm] \bruch{b}{ggt(a,b)} [/mm] )

Also ich habe mir die langen ggT's mal abgekürzt mit

d:= ggT [mm] (\bruch{a}{ggt(a,b)}, [/mm] b ) und
e:=  ggT ( a [mm] ,\bruch{b}{ggt(a,b)} [/mm] )

Jetzt weiß ich schonmal dass

d| [mm] \bruch{a}{ggt(a,b)} [/mm]   ^  d| b

e| [mm] \bruch{b}{ggt(a,b)} [/mm]  ^  e| a


Ich muss für diesen Beweis zeigen, dass d| [mm] \bruch{b}{ggt(a,b)} [/mm] und d|a
und in die andere Richtung e| [mm] \bruch{a}{ggt(a,b)} [/mm] und e| b


d| a ist schnell gezeigt:

[mm] \exists [/mm] x [mm] \in \IN [/mm] mit d*x = [mm] \bruch{a}{ggt(a,b)} [/mm]   <-> d*x*ggT(a,b) = a    [mm] \\ [/mm] wobei x*ggT(a,b) [mm] \in \IN [/mm]  und somit folgt    d|a   (so mache ich das auch für e|b)

Aber jetzt weiß ich nicht weiter...

wie zeige ich d|  [mm] \bruch{b}{ggt(a,b)} [/mm] ?

Bringt es mir etwas, wenn ich weiß dass

d| a ^ d|b -> d| ggT(a,b)  gilt und dass d schon  [mm] \bruch{a}{ggt(a,b)} [/mm] teilt und kann daraus etwas folgern?


Bitte um Hilfe =) und danke im Voraus!

        
Bezug
ggt (...) = ggt (...) beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:58 Fr 09.04.2010
Autor: statler

Hi!

> Beweisen Sie für nat. Zahlen a,b [mm]\ge[/mm] 1
>  
> ggT ( [mm]\bruch{a}{ggt(a,b)}[/mm] , b ) = ggT ( a ,
> [mm]\bruch{b}{ggt(a,b)}[/mm] )

Wenn a = 2 ist und b = 4, dann ist der ggT 2 und die linke Seite ist 1 und die rechte 2, oder übersehe ich da was ... (ich trau mich gar nicht, auf 'senden' zu drücken)

Gruß aus HH-Harburg
Dieter

Bezug
                
Bezug
ggt (...) = ggt (...) beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:03 Fr 09.04.2010
Autor: Schapka

Das siehst du richtig, mein Problem ist jetzt noch dass wir nicht mit Einsetzen als Beweis arbeiten dürfen =/

Ach ja und mit  a*b = kgV (a,b) * ggT (a,b) kam ich auch nicht weiter *sigh*

Bezug
                        
Bezug
ggt (...) = ggt (...) beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:10 Fr 09.04.2010
Autor: schachuzipus

Hallo,

> Das siehst du richtig, mein Problem ist jetzt noch dass wir
> nicht mit Einsetzen als Beweis arbeiten dürfen =/

Das tut ja auch keiner (weil streng verboten)

Dieter hat dir ein Gegenbsp. für deine Aussage gezeigt.

Also gilt die Aussage in obiger Form nicht, mit einem Gegenbsp. hast du (bzw. Dieter) eine mögliche Gültigkeit der Aussage unmöglich gemacht.

Das kannst du auch nicht wieder mit einem "Beweis" hinbiegen. Für $a=2, b=4$ klappt's nicht, damit auch nicht für alle [mm] $a,b\ge [/mm] 1$ wie gefordert ...

>  
> Ach ja und mit  a*b = kgV (a,b) * ggT (a,b) kam ich auch
> nicht weiter *sigh*

Überprüfe mal, ob du dich nicht vllt. vertippt hast mit der Aufgabenstellung ...

Gruß

schachuzipus

Bezug
                                
Bezug
ggt (...) = ggt (...) beweisen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:21 Fr 09.04.2010
Autor: Schapka

Die Aufgabenstellung haben wir so von unserem Dozenten bekommen =/

Bezug
        
Bezug
ggt (...) = ggt (...) beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:10 Fr 09.04.2010
Autor: abakus


> Beweisen Sie für nat. Zahlen a,b [mm]\ge[/mm] 1
>  
> ggT ( [mm]\bruch{a}{ggt(a,b)}[/mm] , b ) = ggT ( a ,
> [mm]\bruch{b}{ggt(a,b)}[/mm] )
>  Also ich habe mir die langen ggT's mal abgekürzt mit
>
> d:= ggT [mm](\bruch{a}{ggt(a,b)},[/mm] b ) und
>  e:=  ggT ( a [mm],\bruch{b}{ggt(a,b)}[/mm] )
>  

Hallo,
ich würde einen grundlegenderen Ansatz verwenden:
Sei d=ggT(a,b). Dann gilt
a=x*d und b=y*d, wobei x und y teilerfremde natürliche Zahlen sind.
Deine Behauptung vereinfacht sich durch diese Festlegung zu ggT(x,b)=ggT(y,a) bzw. zu ggT(x,d*y)=ggT(y,d*x).
Gruß Abakus

> Jetzt weiß ich schonmal dass
>
> d| [mm]\bruch{a}{ggt(a,b)}[/mm]   ^  d| b
>  
> e| [mm]\bruch{b}{ggt(a,b)}[/mm]  ^  e| a
>  
>
> Ich muss für diesen Beweis zeigen, dass d|
> [mm]\bruch{b}{ggt(a,b)}[/mm] und d|a
>  und in die andere Richtung e| [mm]\bruch{a}{ggt(a,b)}[/mm] und e|
> b
>  
>
> d| a ist schnell gezeigt:
>  
> [mm]\exists[/mm] x [mm]\in \IN[/mm] mit d*x = [mm]\bruch{a}{ggt(a,b)}[/mm]   <->
> d*x*ggT(a,b) = a    [mm]\\[/mm] wobei x*ggT(a,b) [mm]\in \IN[/mm]  und somit
> folgt    d|a   (so mache ich das auch für e|b)
>  
> Aber jetzt weiß ich nicht weiter...
>  
> wie zeige ich d|  [mm]\bruch{b}{ggt(a,b)}[/mm] ?
>  
> Bringt es mir etwas, wenn ich weiß dass
>  
> d| a ^ d|b -> d| ggT(a,b)  gilt und dass d schon  
> [mm]\bruch{a}{ggt(a,b)}[/mm] teilt und kann daraus etwas folgern?
>  
>
> Bitte um Hilfe =) und danke im Voraus!


Bezug
                
Bezug
ggt (...) = ggt (...) beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:24 Fr 09.04.2010
Autor: Schapka


> Hallo,
>  ich würde einen grundlegenderen Ansatz verwenden:
>  Sei d=ggT(a,b). Dann gilt
>  a=x*d und b=y*d, wobei x und y teilerfremde natürliche
> Zahlen sind.
>  Deine Behauptung vereinfacht sich durch diese Festlegung
> zu ggT(x,b)=ggT(y,a) bzw. zu ggT(x,d*y)=ggT(y,d*x).
>  Gruß Abakus

Ich stehe gerade ein bisschen auf dem Schlauch, inwiefern bringt mich das weiter - also mein [mm] \bruch{a}{ggT(a,b)} [/mm] = d*x und mein b = d*y und das vereinfacht einsetzen ggT(x,y*d) = ggT(y,x*d) und mit den einfachen Werten weiter beweisen oder wie was wo ^^?

Bezug
                        
Bezug
ggt (...) = ggt (...) beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:34 Fr 09.04.2010
Autor: abakus


> > Hallo,
>  >  ich würde einen grundlegenderen Ansatz verwenden:
>  >  Sei d=ggT(a,b). Dann gilt
>  >  a=x*d und b=y*d, wobei x und y teilerfremde natürliche
> > Zahlen sind.
>  >  Deine Behauptung vereinfacht sich durch diese
> Festlegung
> > zu ggT(x,b)=ggT(y,a) bzw. zu ggT(x,d*y)=ggT(y,d*x).
>  >  Gruß Abakus
>  
> Ich stehe gerade ein bisschen auf dem Schlauch, inwiefern
> bringt mich das weiter - also mein [mm]\bruch{a}{ggT(a,b)}[/mm] =
> d*x und mein b = d*y und das vereinfacht einsetzen
> ggT(x,y*d) = ggT(y,x*d) und mit den einfachen Werten weiter
> beweisen oder wie was wo ^^?

Hallo,
nach unserer Festlegung sind x und y teilierfremd, also ggT(x,y)=1.
Der ggT von x und y*d ist somit der gemeinsame Teiler von x und d.
Damit lautet die Behauptung ggT(x,d)=ggT(y,x*d).
Letzteres entspricht aber mit der gleichen Argumentation wie eben dem ggT von y und d.
Die Behauptung lautet hiermit ggT(x,d)=ggT(y,d) (und beide Werte MÜSSEN 1 sein.)
Gruß Abakus.


Bezug
                                
Bezug
ggt (...) = ggt (...) beweisen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:39 Fr 09.04.2010
Autor: Schapka

Jau stimmt, so hatte ich mir das auch notiert... aber nicht hier geschrieben.

Danke für die Antworten :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de