www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - gleichm.stetig in norm. Räumen
gleichm.stetig in norm. Räumen < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gleichm.stetig in norm. Räumen: Hilfe / Tipp
Status: (Frage) beantwortet Status 
Datum: 18:58 Mi 16.06.2010
Autor: carlosfritz

Aufgabe
Sei V ein normierter Raum und W ein Banachraum.
Sei T: V [mm] \rightarrow [/mm] W eine stetige lineare Abb.

zz.: T ist gleichmäßig stetig.

Hallo, dies oben bleibt mir für eine Aufgabe noch zu zeigen.

Sei [mm] \epsilon [/mm] > 0
Seien x,y [mm] \in [/mm] V
Setzte [mm] \delta [/mm] := (ja das weiss ich ja noch nicht ;) )

Gelte ||x-y|| < [mm] \delta [/mm]

Dann gilt:

Meine erste Idee die Dreiecksungleichung:
||T(x)-T(y)|| [mm] \le [/mm] ||T(x)||+||T(y)|| weil T stetig linear ist ex. ein C [mm] \ge [/mm] 0 mit ||T(x)|| [mm] \le [/mm] C||x||.

Also ||T(x)||+||T(y)|| [mm] \le [/mm] C(||x||+||y||)
Dies kann ich ja aber nicht weiter abschätzen, denn ich habe ja nur zur verfügung, dass ||x-y|| < [mm] \delta [/mm] gilt.


Bin ich mit diesen Umformungen schon auf dem richtigen Weg, muss ich nur tiefgründiger werden oder, sollte ich lieber mit Folgen und so arbeiten?

Gruß, carlos



        
Bezug
gleichm.stetig in norm. Räumen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:03 Mi 16.06.2010
Autor: steppenhahn

Hallo!

> Sei V ein normierter Raum und W ein Banachraum.
> Sei T: V [mm]\rightarrow[/mm] W eine stetige lineare Abb.
>  
> zz.: T ist gleichmäßig stetig.
>  Hallo, dies oben bleibt mir für eine Aufgabe noch zu
> zeigen.
>  
> Sei [mm]\epsilon[/mm] > 0
>  Seien x,y [mm]\in[/mm] V
>  Setzte [mm]\delta[/mm] := (ja das weiss ich ja noch nicht ;) )
>  
> Gelte ||x-y|| < [mm]\delta[/mm]
>  
> Dann gilt:
>  
> Meine erste Idee die Dreiecksungleichung:
>  ||T(x)-T(y)|| [mm]\le[/mm] ||T(x)||+||T(y)|| weil T stetig linear
> ist ex. ein C [mm]\ge[/mm] 0 mit ||T(x)|| [mm]\le[/mm] C||x||.

Ich bin zwar auf dem Gebiet nicht bewandert, aber "linear" bedeutet doch, dass $T(x)-T(y) = T(x-y)$ ist, oder?
Dann schreibe

$||T(x)-T(y)|| = ||T(x-y)|| [mm] \le [/mm] C*||x-y|| < [mm] C*\delta$, [/mm]

also wähle [mm] $\delta [/mm] = [mm] \varepsilon/C$. [/mm]

Grüße,
Stefan

Bezug
                
Bezug
gleichm.stetig in norm. Räumen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:25 Mi 16.06.2010
Autor: carlosfritz

ehm, ja.
Irgendwie bitter, dass ich da nicht selber drauf komme :)

Bezug
        
Bezug
gleichm.stetig in norm. Räumen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:51 Do 17.06.2010
Autor: fred97

Stefan hat das nötige schon gesagt, dennoch 2 Bemerkungen.

1. T ist sogar Lipschitzstetig

2. Wozu muß W ein Banachraum sein ? Ein normierter Raum tuts auch ! (Frag mal den Aufgabensteller)

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de