www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - gleichmäßige Konvergenz
gleichmäßige Konvergenz < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gleichmäßige Konvergenz: Tipp
Status: (Frage) beantwortet Status 
Datum: 20:16 Sa 25.03.2006
Autor: Geddie

Aufgabe
Zeigen sie, dass  [mm] \summe_{v=0}^{ \infty} \bruch{1}{(x + v)(x+v+1)} [/mm] auf  [mm] \IR_{+} [/mm] gegen f(x) := [mm] \bruch{1}{x} [/mm] konvergiert.

Hallo zusammen,

hab diese Aufgabe zum Thema "gleichmäßige Konvergenz" versucht zu lösen, jedoch macht mir die Musterlösung ein wenig Kopfzerbrechen. Die lautet wie folgt:

[mm] \summe_{v=0}^{n} \{1}{x+v}{x+v+1} [/mm] = [mm] \summe_{v=0}^{n} (\bruch{1}{x+v} [/mm] - [mm] \bruch{1}{x+v+1} [/mm] ) = [mm] \bruch{1}{x} [/mm] - [mm] \bruch{1}{x+n+1}. [/mm]
Also konvergiert die Funktionenreihe punktweise gegen f(x).
Ist x>0, so ist |f(x) - [mm] S_{n}(x)| [/mm] = [mm] \bruch{1}{x+n+1} [/mm] < [mm] \bruch{1}{n+1}. [/mm]
Daraus folgt die gleichmäßige Konvergenz.


So nun zu meiner Frage. Wieso geht der Lösungsweg (übrigens vom Prof Fritzsche persönlich) erst über die punktweise Konvergenz? Warum sie punktweise konvergiert, verstehe ich.
Und warum heißt es |f(x) - [mm] S_{n}(x)| [/mm] ?? Ich kenne nur die Definition der gleichmäßigen Konvergenz mit [mm] |f_{n}(x) [/mm] - f(x)| <  [mm] \varepsilon [/mm] . In diesem Fall ist wohl [mm] \bruch{1}{n+1} [/mm] das  [mm] \varepsilon [/mm] ??!?!?!?

Wie würde es denn mit der üblichen Vorgehensweise bei Ermittlung der gleichmäßigen Konvergenz aussehen? Wie geht man denn dann an diese Aufgabe ran?



        
Bezug
gleichmäßige Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 22:37 Sa 25.03.2006
Autor: felixf

Hallo!

> Zeigen sie, dass  [mm]\summe_{v=0}^{ \infty} \bruch{1}{(x + v)(x+v+1)}[/mm]
> auf  [mm]\IR_{+}[/mm] gegen f(x) := [mm]\bruch{1}{x}[/mm] konvergiert.
>  Hallo zusammen,
>  
> hab diese Aufgabe zum Thema "gleichmäßige Konvergenz"
> versucht zu lösen, jedoch macht mir die Musterlösung ein
> wenig Kopfzerbrechen. Die lautet wie folgt:
>  
> [mm]\summe_{v=0}^{n} \{1}{x+v}{x+v+1}[/mm] = [mm]\summe_{v=0}^{n} (\bruch{1}{x+v}[/mm]
> - [mm]\bruch{1}{x+v+1}[/mm] ) = [mm]\bruch{1}{x}[/mm] - [mm]\bruch{1}{x+n+1}.[/mm]
>  Also konvergiert die Funktionenreihe punktweise gegen
> f(x).
>  Ist x>0, so ist |f(x) - [mm]S_{n}(x)|[/mm] = [mm]\bruch{1}{x+n+1}[/mm] <
> [mm]\bruch{1}{n+1}.[/mm]
>  Daraus folgt die gleichmäßige Konvergenz.
>
>
> So nun zu meiner Frage. Wieso geht der Lösungsweg (übrigens
> vom Prof Fritzsche persönlich) erst über die punktweise
> Konvergenz? Warum sie punktweise konvergiert, verstehe
> ich.

Es ist ein wenig ueberfluessig: Er haette mit dem zweiten Argument (''Ist x>0, so ist [mm]|f(x) - S_{n}(x)| = \bruch{1}{x+n+1} < \bruch{1}{n+1}.[/mm]'') direkt die gleichmaessige Konvergenz bekommen koennen.

>  Und warum heißt es |f(x) - [mm]S_{n}(x)|[/mm] ?? Ich kenne nur die
> Definition der gleichmäßigen Konvergenz mit [mm]|f_{n}(x)[/mm] -
> f(x)| <  [mm]\varepsilon[/mm] . In diesem Fall ist wohl
> [mm]\bruch{1}{n+1}[/mm] das  [mm]\varepsilon[/mm] ??!?!?!?

Also [mm] $S_n(x)$ [/mm] ist ja [mm] $f_n(x)$. [/mm]

Und dann benutzt er, dass $|f(x) - [mm] f_n(x)| [/mm] < [mm] \varepsilon$ [/mm] fuer alle [mm] $\varepsilon [/mm] > 0$ und alle $x$ und alle $n [mm] \ge N(\varepsilon)$ [/mm] (also die normale Definition von glm. konv.) aequivalent dazu ist, dass es eine Folge [mm] $M_n \to [/mm] 0$ gibt mit $|f(x) - [mm] f_n(x)| [/mm] < [mm] M_n$, [/mm] $n [mm] \in \IN$ [/mm] fuer alle $x$.
(Die Aequivalenz solltest du dir mal ueberlegen: Sie folgt direkt aus der [mm] $\varepsilon$-Definition [/mm] der Folgenkonvergenz.)

> Wie würde es denn mit der üblichen Vorgehensweise bei
> Ermittlung der gleichmäßigen Konvergenz aussehen? Wie geht
> man denn dann an diese Aufgabe ran?

Etwa so (mit den gleichen Zwischenrechnungen wie oben):

Sei ein [mm] $\varepsilon [/mm] > 0$ gegeben. Sei [mm] $n_0 \in \IN$ [/mm] mit [mm] $\frac{1}{n_0 + 1} [/mm] < [mm] \varepsilon$. [/mm] Dann gilt fuer alle $n [mm] \ge n_0$ [/mm] und alle $x$, dass $|f(x) - [mm] S_n(x)| \le \frac{1}{n + 1} \le \frac{1}{n_0 + 1} [/mm] < [mm] \varepsilon$ [/mm] ist. Also konvergiert [mm] $S_n$ [/mm] gleichmaessig gegen $f$.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de