www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - gleichmäßige Konvergenz
gleichmäßige Konvergenz < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gleichmäßige Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:17 Do 06.10.2011
Autor: paula_88

Aufgabe
[mm] f_{n}(x)=\bruch{nx}{1+n^{2}x^{2}} [/mm]

1) Zu prüfen ist ob [mm] f_{n}(x) [/mm] auf [mm] 0,\infty [/mm] gleichmäßig konvergiert.

Hallo an alle,
bei dieser Aufgabe gibt es einer kleine Ausnahme, nach der man verfahren muss, und ich weiß nicht ganz genau, wie ich dies anstellen soll.

Punktweise Konvergenz habe ich schon nachgewiesen, indem ich den Grenzwert (=0) berechnet habe.
Dann habe ich ein Maximum berechnet: [mm] \bruch{1}{n}, [/mm] mit dem ich anhand der Supremumsnorm die gleichmäßige Konvergenz zeigen will:

[mm] \limes_{n\rightarrow\infty}\parallel f_{n}(\bruch{1}{n})-0 \parallel=\bruch{1}{2} [/mm]

Um gleichmäßige Konvergenz gezeigt zu haben, müsste eigentlich 0 rauskommen.

Jetzt erinner ich mich dran, dass wir die Grenze auf [mm] a,\infty [/mm] erweitert haben und für a>0 gezeigt haben, dass die Funktion gleichmäßig konvergiert.

Ich selbst bekomme diesen Schritt aber nichtmehr hin. Könnte mir bitte jemand den Anfang zeigen??

Und inwiedern ist das Maximum für das alte Intervall nicht definiert, sodass ich die Grenze erweitern muss??

Ich hoffe meine Fragen sind klar geworden :-)

Vielen Dank im Voraus, Paula.

        
Bezug
gleichmäßige Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 11:24 Do 06.10.2011
Autor: fred97


> [mm]f_{n}(x)=\bruch{nx}{1+n^{2}x^{2}}[/mm]
>  
> 1) Zu prüfen ist ob [mm]f_{n}(x)[/mm] auf [mm]0,\infty[/mm] gleichmäßig
> konvergiert.
>  Hallo an alle,
>  bei dieser Aufgabe gibt es einer kleine Ausnahme, nach der
> man verfahren muss, und ich weiß nicht ganz genau, wie ich
> dies anstellen soll.
>  
> Punktweise Konvergenz habe ich schon nachgewiesen, indem
> ich den Grenzwert (=0) berechnet habe.
>  Dann habe ich ein Maximum berechnet: [mm]\bruch{1}{n},[/mm] mit dem
> ich anhand der Supremumsnorm die gleichmäßige Konvergenz
> zeigen will:
>  
> [mm]\limes_{n\rightarrow\infty}\parallel f_{n}(\bruch{1}{n})-0 \parallel=\bruch{1}{2}[/mm]
>  
> Um gleichmäßige Konvergenz gezeigt zu haben, müsste
> eigentlich 0 rauskommen.
>  
> Jetzt erinner ich mich dran, dass wir die Grenze auf
> [mm]a,\infty[/mm] erweitert haben und für a>0 gezeigt haben, dass
> die Funktion gleichmäßig konvergiert.
>  
> Ich selbst bekomme diesen Schritt aber nichtmehr hin.
> Könnte mir bitte jemand den Anfang zeigen??


Für x [mm] \ge [/mm] a und n [mm] \in \IN [/mm] ist:

               [mm] $|f_n(x)| \le \bruch{nx}{n^2x^2}= \bruch{1}{nx} \le \bruch{1}{na}$ [/mm]

FRED

>  
> Und inwiedern ist das Maximum für das alte Intervall nicht
> definiert, sodass ich die Grenze erweitern muss??
>  
> Ich hoffe meine Fragen sind klar geworden :-)
>  
> Vielen Dank im Voraus, Paula.


Bezug
                
Bezug
gleichmäßige Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:35 Do 06.10.2011
Autor: paula_88


> > [mm]f_{n}(x)=\bruch{nx}{1+n^{2}x^{2}}[/mm]
>  >  
> > 1) Zu prüfen ist ob [mm]f_{n}(x)[/mm] auf [mm]0,\infty[/mm] gleichmäßig
> > konvergiert.
>  >  Hallo an alle,
>  >  bei dieser Aufgabe gibt es einer kleine Ausnahme, nach
> der
> > man verfahren muss, und ich weiß nicht ganz genau, wie ich
> > dies anstellen soll.
>  >  
> > Punktweise Konvergenz habe ich schon nachgewiesen, indem
> > ich den Grenzwert (=0) berechnet habe.
>  >  Dann habe ich ein Maximum berechnet: [mm]\bruch{1}{n},[/mm] mit
> dem
> > ich anhand der Supremumsnorm die gleichmäßige Konvergenz
> > zeigen will:
>  >  
> > [mm]\limes_{n\rightarrow\infty}\parallel f_{n}(\bruch{1}{n})-0 \parallel=\bruch{1}{2}[/mm]
>  
> >  

> > Um gleichmäßige Konvergenz gezeigt zu haben, müsste
> > eigentlich 0 rauskommen.
>  >  
> > Jetzt erinner ich mich dran, dass wir die Grenze auf
> > [mm]a,\infty[/mm] erweitert haben und für a>0 gezeigt haben, dass
> > die Funktion gleichmäßig konvergiert.
>  >  
> > Ich selbst bekomme diesen Schritt aber nichtmehr hin.
> > Könnte mir bitte jemand den Anfang zeigen??
>  
>
> Für x [mm]\ge[/mm] a und n [mm]\in \IN[/mm] ist:
>  
> [mm]|f_n(x)| \le \bruch{nx}{n^2x^2}= \bruch{1}{nx} \le \bruch{1}{na}[/mm]

Aber inwiefern hilft mir das jetzt?
Ich habe schon viel rumversucht, ich benötige bitte eine Erklärung, wieso man so einfach das Intervall verändern darf und wie man dann mit a weiter ansetzt.
Der gegebene Ansatz ist mir irgendwie zu klein :-)

>  
> FRED
>  >  
> > Und inwiedern ist das Maximum für das alte Intervall nicht
> > definiert, sodass ich die Grenze erweitern muss??
>  >  
> > Ich hoffe meine Fragen sind klar geworden :-)
>  >  
> > Vielen Dank im Voraus, Paula.
>  


Bezug
                        
Bezug
gleichmäßige Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 11:51 Do 06.10.2011
Autor: fred97


> > > [mm]f_{n}(x)=\bruch{nx}{1+n^{2}x^{2}}[/mm]
>  >  >  
> > > 1) Zu prüfen ist ob [mm]f_{n}(x)[/mm] auf [mm]0,\infty[/mm] gleichmäßig
> > > konvergiert.
>  >  >  Hallo an alle,
>  >  >  bei dieser Aufgabe gibt es einer kleine Ausnahme,
> nach
> > der
> > > man verfahren muss, und ich weiß nicht ganz genau, wie ich
> > > dies anstellen soll.
>  >  >  
> > > Punktweise Konvergenz habe ich schon nachgewiesen, indem
> > > ich den Grenzwert (=0) berechnet habe.
>  >  >  Dann habe ich ein Maximum berechnet: [mm]\bruch{1}{n},[/mm]
> mit
> > dem
> > > ich anhand der Supremumsnorm die gleichmäßige Konvergenz
> > > zeigen will:
>  >  >  
> > > [mm]\limes_{n\rightarrow\infty}\parallel f_{n}(\bruch{1}{n})-0 \parallel=\bruch{1}{2}[/mm]
>  
> >  

> > >  

> > > Um gleichmäßige Konvergenz gezeigt zu haben, müsste
> > > eigentlich 0 rauskommen.
>  >  >  
> > > Jetzt erinner ich mich dran, dass wir die Grenze auf
> > > [mm]a,\infty[/mm] erweitert haben und für a>0 gezeigt haben, dass
> > > die Funktion gleichmäßig konvergiert.
>  >  >  
> > > Ich selbst bekomme diesen Schritt aber nichtmehr hin.
> > > Könnte mir bitte jemand den Anfang zeigen??
>  >  
> >
> > Für x [mm]\ge[/mm] a und n [mm]\in \IN[/mm] ist:
>  >  
> > [mm]|f_n(x)| \le \bruch{nx}{n^2x^2}= \bruch{1}{nx} \le \bruch{1}{na}[/mm]
>  
> Aber inwiefern hilft mir das jetzt?



Dann danke ich mir zunächst selbst für meine formidable Antwort.....


Dennoch: geben wir ein [mm] \varepsilon>0 [/mm]  vor, so gibt es ein N [mm] \in \IN [/mm] mit:

                      [mm] \bruch{1}{na}< \varepsilon [/mm] für alle n> N.

Dann ist

              [mm] $|f_n(x)-0| \le \varepsilon$ [/mm]  für alle n > N und alle x [mm] \in [/mm] [a, [mm] \infty). [/mm]

Das bedeutet: die Folge [mm] (f_n) [/mm] konvergiert auf [a, [mm] \infty) [/mm] gleichmäßig.



>  Ich habe schon viel rumversucht, ich benötige bitte eine
> Erklärung, wieso man so einfach das Intervall verändern
> darf und wie man dann mit a weiter ansetzt.


Da wurde nichts verändert !

Sinn und Zweck der ganzen Geschichte ist:

1. die Folge [mm] (f_n) [/mm] konvergiert auf [0, [mm] \infty) [/mm] nicht gleichmäßig.

2. die Folge [mm] (f_n) [/mm] konvergiert auf jedem Intervall  [a, [mm] \infty) [/mm] mit a>0 gleichmäßig.


>  Der gegebene Ansatz ist mir irgendwie zu klein :-)

Ich bitte vielmals um Entschuldigung.

FRED

>  
> >  

> > FRED
>  >  >  
> > > Und inwiedern ist das Maximum für das alte Intervall nicht
> > > definiert, sodass ich die Grenze erweitern muss??
>  >  >  
> > > Ich hoffe meine Fragen sind klar geworden :-)
>  >  >  
> > > Vielen Dank im Voraus, Paula.
> >  

>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de