gleichmäßige Stetigkeit < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 11:46 So 17.04.2005 | Autor: | Nicola |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt:
Ich lerne gerade für meine Staatsexamensprüfung und bin zum Wiederholten Male über die gleichmäßige Stetigkeit gestolpert.
Ist jemand vielleicht in der Lage, mir den Unterschied der Stetigkeit - die Formulierung mir dem ?-?-Kriterium - gegenüber der gleichmäßigen Stetigkeit in normal verständlicher Sprache zu erklären?
Ich sehe in der Formelsprache keine Unterschiede.
Vielen lieben Dank
Eure verzweifelte Nicola
|
|
|
|
Guten Morgen!
Also, ich werde es mal versuchen... trotzdem sollten wir uns die Formeln nochmals ansehen.
Also, $f$ ist meine Funktion und $D$ ist mein Definitionsbereich. Dann heißt $f$ stetig, falls
[mm] $\forall \; [/mm] x [mm] \in [/mm] D [mm] \; \forall \; \varepsilon [/mm] > 0 [mm] \; \exists \; \delta [/mm] > 0 [mm] \; \forall [/mm] y [mm] \in [/mm] ] x - [mm] \delta, [/mm] x + [mm] \delta[ \cap [/mm] D : | f(x) - f(y)| < [mm] \varepsilon$
[/mm]
Und $f$ heißt gleichmäßig stetig, falls
[mm] $\forall \; \varepsilon [/mm] > 0 [mm] \; \exists \; \delta [/mm] > 0 [mm] \; \forall \; [/mm] x [mm] \in [/mm] D [mm] \; \forall [/mm] y [mm] \in [/mm] ] x - [mm] \delta, [/mm] x + [mm] \delta[ \cap [/mm] D : | f(x) - f(y)| < [mm] \varepsilon$
[/mm]
Also - wo ist da der Unterschied? Der besteht darin, dass bei der obigen Formel, dass "für alle $x [mm] \in [/mm] D$" am Anfang der Formel steht und bei der unteren steht es hinter der Existenz des [mm] $\delta$.
[/mm]
Und das macht logisch gesehen einen großen Unterschied! Bei der oberen Definition lautet die Spielregel: irgendwer gibt Dir einen Punkt $x$ und ein [mm] $\varepsilon$ [/mm] vor und Du mußt dazu ein [mm] $\delta$ [/mm] finden, das die Bedingung erfüllt. Wenn ein anderes [mm] $\varepsilon$ [/mm] oder ein anderer Punkt $x$ vorgegeben wird, hast Du die Freiheit, ein neues [mm] $\delta$ [/mm] zu wählen.
Bei gleichmäßiger Stetigkeit ist das anders! Da bekommst Du nur das [mm] $\varepsilon$ [/mm] vorgelegt und mußt dann ein [mm] $\delta$ [/mm] finden, dass es für alle $x$ tut! Deswegen "gleichmäßig" stetig - das [mm] $\delta$ [/mm] muß auf dem gesamten Definitionsbereich passen.
Am besten sieht man den Unterschied am Beispiel einer Funktion, die zwar setig, aber nicht gleichmäßig stetig ist. Betrachten wir $f(x) = [mm] \frac{1}{x}$ [/mm] auf $D = ]0, [mm] \infty[$. [/mm] Die Funktion ist stetig, als Quotient stetiger Funktionen, wobei der Nenner in $D$ keine Nullstelle hat.
Aber sie ist nicht gleichmäßig stetig! Das kannst Du Dir so vorstellen: wenn ein [mm] $\varepsilon [/mm] > 0$ gegeben ist und Du Dein [mm] $\delta$ [/mm] suchen mußt, dann findest Du zwar für jedes $x [mm] \in [/mm] D$ ein [mm] $\delta$, [/mm] so dass es paßt - aber je weiter Du mit dem $x$ gegen 0 wanderst, desto schlimmer wird die Situation (der Graph ist sehr langgestreckt) und irgendwann wird Dir Dein [mm] $\delta$ [/mm] den Dienst versagen - Du bräuchtest ein kleineres.
Aber jedes noch so kleine [mm] $\delta$ [/mm] versagt irgendwann, wenn das $x$ egen 0 wandert.
Also zusammengefaßt: für jedes $x$ kann man zwar ein [mm] $\delta$ [/mm] finden, es gibt aber kein positives [mm] $\delta$, [/mm] das es für alle $sx$ simultan tut. Und deshalb ist diese Funktion zwar stetig, aber nicht gleichmäßig stetig.
Alles klar? Ungefähr? Der Unterschied zwischen punktweiser und gleichmäßiger Konvergenz von Funktionenfolgen ist übrigens im Grunde der Gleiche...
Lars
|
|
|
|