www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - gleichung mit komplexen zahlen
gleichung mit komplexen zahlen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gleichung mit komplexen zahlen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 02:43 Mi 08.07.2009
Autor: meg

Aufgabe
Die Gleichung [mm] x^{4}+1=0 [/mm] nach [mm] \0x [/mm] lösen.

Hallo,
ich habe die gleichung so gelöst:
[mm] a=x^2 [/mm]
[mm] a^2+1=0 [/mm]
=> a= [mm] \pm [/mm] i
=> [mm] x^2=\pm [/mm] i
=> [mm] x=\pm \wurzel{i} [/mm]

Ist nicht falsch, aber die Lösung [mm] x=\bruch{\wurzel{2}}{2}(\pm1 \pm [/mm] i) ist auch nicht falsch und wie komme ich auf diese?

        
Bezug
gleichung mit komplexen zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 03:03 Mi 08.07.2009
Autor: schachuzipus

Hallo meg,

> Die Gleichung [mm]x^{4}+1=0[/mm] nach [mm]\0x[/mm] lösen.
>  Hallo,
> ich habe die gleichung so gelöst:
>  [mm]a=x^2[/mm]
>  [mm]a^2+1=0[/mm]
>  => a= [mm]\pm[/mm] i

>  => [mm]x^2=\pm[/mm] i

>  => [mm] $x=\pm \wurzel{\red{\pm}i}$ [/mm]

Das ist zwar so formal richtig (bis auf das fehlende [mm] \pm), [/mm] aber was verstehst du unter [mm] $\sqrt{i}$ [/mm] ?

Rechne das mal aus bzw. um und du solltest (unter Berücksichtigung aller Vorzeichen) auf die andere(n) Lösung(en) kommen ...

>  
> Ist nicht falsch, aber die Lösung
> [mm]x=\bruch{\wurzel{2}}{2}(\pm1 \pm[/mm] i) ist auch nicht falsch

Ja, eher besser im Sinne von verständlicher.

Bei Wurzeln aus komplexen Zahlen muss man immer sagen, was man darunter versteht ...

> und wie komme ich auf diese?

Stelle die Gleichung um zu [mm] $z^4=-1$ [/mm] und schaue mal in deinem Skript nach, wie man die "n-te" Wurzel einer komplexen Zahl berechnet.

Das sollte im Dunstkreis der "Moivre-Formel" stehen.

Es gibt dafür n Lösungen ...

Hier gibt es für die 4-ten Wurzeln aus -1 eben 4 Lösungen ...

Versuche es erstmal selber, wenn's nicht klappt, frage nochmal nach ...


LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de