www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - glm. Stetigkeit
glm. Stetigkeit < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

glm. Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:37 Do 07.04.2011
Autor: SolRakt

Hallo,

wenn eine Funktionenfolge glm. stetig ist, so muss doch die Grenzfunktion nicht glm. stetig sein. Nur wie zeige ich das?

Mir fällt kein Beispiel ein. meine Vermutung ist auch eher intuitiv xD

Danke vielmals.

Gruß

        
Bezug
glm. Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 20:00 Do 07.04.2011
Autor: Blech

Hi,


[mm] $\frac [/mm] 1x$

ist nicht glm stetig. Such Dir eine glm stetige Folge (d.h. mit [mm] $f_n(0)$ [/mm] endlich), die von unten dagegen konvergiert.

ciao
Stefan

Bezug
                
Bezug
glm. Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:03 Do 07.04.2011
Autor: SolRakt

Hmm..danke. :)

Wie zeige ich denn, dass diese nicht glm. stetig ist?

Ist [mm] f_{n}(x) [/mm] = [mm] x^{-(1+ \bruch{1}{n})} [/mm] die gesuchte folge?

Bezug
                        
Bezug
glm. Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 12:12 Fr 08.04.2011
Autor: Blech

Hi,

was ist denn die Definition glm. Stetigkeit? Da setzt Du jetzt [mm] $\frac [/mm] 1x$ ein und schaust, warum es nicht geht.


> Ist $ [mm] f_{n}(x) [/mm] = [mm] x^{-(1+ \bruch{1}{n})} [/mm] $ die gesuchte folge?

Das ist weder gleichmäßig stetig, noch endlich bei 0.

ciao
Stefan

Bezug
        
Bezug
glm. Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 12:17 Fr 08.04.2011
Autor: fred97


> Hallo,
>  
> wenn eine Funktionenfolge glm. stetig ist, so muss doch die
> Grenzfunktion nicht glm. stetig sein. Nur wie zeige ich
> das?
>  
> Mir fällt kein Beispiel ein. meine Vermutung ist auch eher
> intuitiv xD


Sei D:=[0,1]  und [mm] f_n:D \to \IR [/mm] sei def. durch  [mm] f_n(x):=x^n [/mm]

Alle [mm] f_n [/mm] sind auf D stetig und da D kompakt ist, sind auch alle [mm] f_n [/mm] auf D glm, stetig

[mm] (f_n) [/mm] konvergiert punktweise auf D gegen eine unstetige Grenzfunktion !!

FRED

>  
> Danke vielmals.
>  
> Gruß


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de