www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - graphisches differenzieren
graphisches differenzieren < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

graphisches differenzieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:18 Do 01.11.2007
Autor: tha_specializt

Unser Mathe-Lehrer gab uns zum üben zwecks Klausur eine Seite  mit in die Ferien, auf der man visuell ohne Hilfsmittel Schaubilder den entsprechenden abgeleiteten Schaubildern zuordnen soll. Als Zuordnungskriterium würde mir hier nur "die Anzahl der x-Achsenschnitt/-Berührpunkte" und "der generelle Verlauf der Funktion im Vergleich zur Ableitung" einfallen ... könnte mir bitte jemand möglichst viele weitere nennen?

Zweite Frage: Wie funktioniert graphisches differenzieren mit Bleistift, Lineal/Geodreieck? Alle Infos die ich bisher fand verstehe ich nich wirklich ... es wäre nett, wenn mir jemand möglichst einfach erklärt wie das geht. Ich kann mir im Kopf vorstellen wie die 1. Ableitung einer Funktion aussehen müsste (grob), aber wie manche das mit den Dreiecken auf den Blättern machen ist mir schleierhaft, sorry

        
Bezug
graphisches differenzieren: Antwort
Status: (Antwort) fertig Status 
Datum: 15:37 Do 01.11.2007
Autor: MontBlanc

Hi,

hier kommt es wohl stark darauf an, die Zusammenhänge zwischen erster Ableitung und Ausgangsfunktion zu kennen. Dabei ist es wichtig sich ersteinmal die signifikanten Punkte der Ausgangsfunktion anzusehen, Extrempunkte und Wendepunkte (die Schnittpunkte mit der x-Achse kannst du getrost stecken lassen, denn die wirken sich nicht auf die erste Ableitung aus, es sei denn sie Berührpunkte). Dann musst du dir Überlegung zu was Extrem- und Wendepunkte in der ersten Ableitung "werden", also:

Extrempunkt von f ---> ?? von f'

Wendepunkt von f --> ?? von f'

Das bekommst du sicher leicht heraus :-). Ich will dir mal nicht alles vorkauen.

Dann kannst du schauen, welchen Grades die Ausgangsfunktion ist. Bis zum Grad 3 oder 4 kann man das häufig noch sehen. Die Ableitung muss dann einen Grad tiefer liegen. So kannst du erstmal vorselektieren.

Mir fiele dann noch ein, zu schauen, ob die Ausgangsfunktion in bestimmten Teilabschnitten steigt oder fällt. Fällt sie, muss die erste Ableitung in diesem Bereich negativ sein, steigt sie, muss die erste Ableitung positiv sein.

Soweit dazu, hilft dir das schonmal ein wenig.

Lg

Bezug
                
Bezug
graphisches differenzieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:01 Do 01.11.2007
Autor: tha_specializt


> Extrempunkt von f ---> ?? von f'
>  
> Wendepunkt von f --> ?? von f'

haben wir nie so wirklich behandelt ... ging eher darum, mittels CAS Funktionen zu konstruieren bzw. komplexe Lösungen errechnen zu lassen.

Ich habe mittlerweile hier im Forum nachgelesen, dass ein Extrempunkt ein lokales Minimum bzw. Maximum ist .. hatte ich mir auch so gedacht. Zu Wendepunkt fand ich leider nichts, aber ich vermute mal, dass es einfach ein Punkt ist, an dem die Steigung 0 beträgt?

Aber wären dann zb. die Wendepunkte und Extrempunkte bei [mm] x^{3} [/mm] nicht identisch??

Bezug
                        
Bezug
graphisches differenzieren: Antwort
Status: (Antwort) fertig Status 
Datum: 16:14 Do 01.11.2007
Autor: Teufel

Hi!

Bei Extrempunkten ist der Funktionswert der 1. Ableitung 0 (und der der 2. ungleich 0).
Bei Wendepunkten ist der Funktionswert der 2. Ableitung an der Stelle 0  (und der der 3. ungleich 0).

Bei f(x)=x³ ist die 1. UND 2. Ableitung an der Stelle x=0 0. Das ist Zeichen für einen Sattelpunkt (wenn die 3. Ableitung da ungleich 0 ist), einem Wendepunkt, in dem gleichzeitig der Anstieg 0 ist.


Nun zu deinen Fragen:

Du kannst beim Schaubild des Grafen z.B. von links anfangen (mach ich immer)... und dann sieht du ja wo der Graf steigt und wo nicht. Wenn der Graf steigt, muss die Ableitungsfunktion oberhalb der x-Achse verlaufen, bei einam Extrem ODER Sattelpunkt schneidet sie die x-Achse und wenn der Graf fällt, verläuft seine Ableitungsfunktion unterhalb von der x-Achse.

Und die 2. Variante mit Bleistift und Geodreieck:

Die Ableitungsfunktion zeigt dir ja den Anstieg deiner Ausgangsfunktion an allen beliebigen Stellen an. Der Anstieg der Funktion an einer Stelle ist der Anstieg der Tangente an dieser Stelle!

Wenn du dir also eine Tangente nach Augenmaß an den Grafen zeichnest und ihren Anstieg ermittelst (auch Augenmaß), dann hast du den Funktionswert der Ableitungsfunktion an der Stelle.
Das machst du mit ein paar Stellen und erhälst viele Punkte deiner Ableitungsfunktion.

Kanst es ja mit f(x)=x² testen, rauskommen sollte Als Ableitungsfunktion f'(x)=2x


Bezug
                                
Bezug
graphisches differenzieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:33 Do 01.11.2007
Autor: tha_specializt

ich hatte irgendwie Probleme, deine Antwort zu lesen. Ich fasse nochmal zusammen, bite sag mir ob ich das so richtig verstanden habe:

Wenn f'(x)=0, dann ist es ein Extrempunkt
Wenn f''(x)=0, dann ist es ein Wendepunkt
Wenn f'(x) [mm] \wedge [/mm] f''(x) = 0, dann ist es ein Sattelpunkt

Richtig?

Bezug
                                        
Bezug
graphisches differenzieren: Antwort
Status: (Antwort) fertig Status 
Datum: 16:37 Do 01.11.2007
Autor: Teufel

Ja, zumindest sind das die wichtigen Fakten für dich, wenn du eine Ableitungsfunktion zeichnen sollst oder so.

Vollständig wäre es:

Extrempunkt: f'(x)=0 [mm] \wedge f''(x)\not= [/mm] 0
Wendepunkt: f''(x)=0 [mm] \wedge f'''(x)\not= [/mm] 0
Sattelpunkt: f'(x)=0 [mm] \wedge [/mm] f''(x)=0 [mm] \wedge f'''(x)\not= [/mm] 0

Aber ansonsten richtig!




Bezug
        
Bezug
graphisches differenzieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:39 Do 01.11.2007
Autor: tha_specializt

ich denke, ich verstehe es jetzt dank euch beiden ein bischen besser, DANKE!

Bezug
                
Bezug
graphisches differenzieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:40 Do 01.11.2007
Autor: Teufel

Kein Problem :) Aber wir geben erst Ruhe, wenn du es komplett verstanden hast! :P Also, wenn Fragen sind, dann frag ruhig nochmal.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de