www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - grenzwert und co.
grenzwert und co. < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

grenzwert und co.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:20 Di 20.05.2008
Autor: Patella

Aufgabe
für jedes a>0 gilt lim (n--> unendlich) (n-te WURZEL a) = 1
diese aussage soll gezeit werden.

Tipp: betrachte zuerst a<1
um zu zeigen, dass [mm] 0\le a^1/n [/mm] < [mm] \varepsilon [/mm] für jedes beliebige kleine epsilon richtig ist, wie bei n-te Wurzel aus n.
den fall a < 1 können sie mit b=1/a auf den ersten zurück führen!

Ich habe mich jetzt schon mit dieser aussage auseinander gesetzt. auch mit der n-ten wurzel aus n, aber irgendwie hab ich leider noch keine richtige idee...

ich wäre über eure hilfe sehr dankbar

lieben gruß


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
grenzwert und co.: Antwort
Status: (Antwort) fertig Status 
Datum: 18:55 Di 20.05.2008
Autor: Al-Chwarizmi


> für jedes a>0 gilt lim (n--> unendlich) (n-te WURZEL a) =  1


Mit TeX:   [mm] \limes_{n\rightarrow\infty} \wurzel[n]{a} = 1 [/mm]


>  diese aussage soll gezeigt werden.
>  
> Tipp: betrachte zuerst a<1

gemeint war wahrscheinlich    a>1  !     (siehe ***)

>  um zu zeigen, dass [mm]0\le a^1/n[/mm] < [mm]\varepsilon[/mm] für jedes        [kopfschuettel]
> beliebige kleine epsilon richtig ist, wie bei n-te Wurzel
> aus n.

           ???????

>  den fall a < 1 können sie mit b=1/a auf den ersten zurück  führen!  (***)
>  Ich habe mich jetzt schon mit dieser aussage auseinander
> gesetzt. auch mit der n-ten wurzel aus n, aber irgendwie
> hab ich leider noch keine richtige idee...
>
> ich wäre über eure hilfe sehr dankbar
>  
> lieben gruß
>  

Im Fall  a > 1  geht es darum, zu zeigen, dass

                          [mm] 1 \le a^{1/n} < 1+ \varepsilon [/mm]

für jedes beliebig kleine positive [mm] \varepsilon [/mm]  mit einem genügend
grossen  n  erfüllt werden kann.
Für die weitere Rechnung empfiehlt es sich wohl, diese Ungleichungs-
Kette mit dem Exponenten  n  zu potenzieren und zu verwenden,
dass  (1+ [mm] \varepsilon)^n \ge [/mm] 1 + n [mm] \varepsilon [/mm]   ( für [mm] \varepsilon [/mm] > 0 und  n [mm] \in \IN [/mm] )


Gruß     al-Chwarizmi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de