www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - grenzwertbetrachtung
grenzwertbetrachtung < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

grenzwertbetrachtung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:52 Mo 29.11.2004
Autor: spacephreak

hallo ihr
ich soll den grenzwert ermitteln von(schwerpunkt de hospital):
[mm] \limes_{x\rightarrow+\infty} \bruch{ln^{2n}(x)}{x^{n}} [/mm]
Dies ist vom Typ [mm] \bruch{\infty}{\infty}, [/mm] desween kann man de hospital verwenden.
habe dann folgendes:
[mm] \limes_{x\rightarrow+\infty} \bruch{2*ln^{2n-1}(x)* \bruch{1}{x}}{nx^{n-1}} [/mm]
nach etwas umformen:
[mm] \limes_{x\rightarrow+\infty} \bruch{2n*ln^{2n-1}(x)* \bruch{1}{x^{n}}}{n} [/mm]
nun hab ich ja im zähler [mm] \infty [/mm] * 0, oder sehe ich das falsch?
jedenfalls haben wir, wenn ich es und meine mitstudentin nicht beide falsch abgeschrieben habe, = 0 raus.
[mm] ln^{2n-1}(x) [/mm] ist doch [mm] \infty? [/mm]
mfg
markus

ps:danke im voraus, server sind schon genug beschäftigt:)

        
Bezug
grenzwertbetrachtung: ...weiter geht's
Status: (Antwort) fertig Status 
Datum: 20:08 Mo 29.11.2004
Autor: e.kandrai

Bis dahin hast du's richtig gemacht (außer, dass du in der 2. Formel im Zähler ein n vergessen hast).

Jetzt bist du bei: [mm]\limes_{x\rightarrow+\infty} \bruch{2n\cdot{}ln^{2n-1}(x)\cdot{} \bruch{1}{x^{n}}}{n}[/mm]

Das formen wir noch um, und bringen das [mm]\bruch{1}{x^2}[/mm] in den Nenner:

[mm]\limes_{x\rightarrow+\infty} \bruch{2n\cdot{}ln^{2n-1}(x){x^{n}}}{n\cdot{}x^2}[/mm]

Richtig "bemerkenswert" ist das [mm]x^n[/mm] im Nenner: obwohl es durch die l'Hôpital-Ableitung zuerst zu einem [mm]x^{n-1}[/mm] wurde, so isses wieder zu nem [mm]x^n[/mm] geworden (durch die innere Ableitung des Zählers).
Und das Spielchen kannst du noch ein paar Ableitungen weiter treiben: der Nenner wird immer ein [mm]x^n[/mm] bleiben, während der Zähler sich irgendwann "aufgelöst" hat (wenn alle n im Exponenten "aufgebraucht" sind).
Somit haben wir dann im Zähler etwas Konstantes, während der Nenner noch immer ein [mm]x^n[/mm]-Term ist.
Das erklärt den Grenzwert Null.

Bezug
                
Bezug
grenzwertbetrachtung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:00 Mo 29.11.2004
Autor: spacephreak

hi
woher hast du aufeinmal [mm] x^{2}? [/mm] du meintest bestimmt [mm] x^{n} [/mm] in den nenner bringen. aber dann fällt er im zähler weg, sprich dann hast du:
$ [mm] \limes_{x\rightarrow+\infty} \bruch{2n\cdot{}ln^{2n-1}(x)}{n\cdot{}x^{n}} [/mm] $
hab ich das soweit richtig verstanden?
jetzt hab ich wieder nen typ unendlich/unendlich und kann de hospital n-mal benutzen. im nenner bleibt dann ja immer etwas(wie du gesagt hast) was du zum zähler gesagt hast, hab ich nicht ganz verstanden.
aber [mm] ln^{2n-1} [/mm] kann ich ja auch als [mm] 1/(ln^{-2n+1}), [/mm] wobei die letzte 1 bei jeder ableitung immer größer wird, so das ich irgendwann [mm] 1/(\infinity), [/mm] was "= 0" ist.
oder? (kann sein, das du das selbe gemeint hast*g, aber ich wollte das eben nochmal so aufschreiben wie ich es verstanden habe)
mfg
markus


Bezug
                        
Bezug
grenzwertbetrachtung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:42 Mo 29.11.2004
Autor: e.kandrai

Das [mm]x^2[/mm] war natürlich Blödsinn, ich meinte [mm]x^n[/mm].

Wir meinen wirklich dasselbe: wenn du [mm]ln^{2n}(x)[/mm] nur oft genug ableitest, und die innere Ableitung [mm]\bruch{1}{x}[/mm] sich jedesmal in den Nenner verabschiedet, dann bleibt am Ende im Zähler nur noch ne Konstante übrig:  [mm]ln^{2n}(x)[/mm]  ->  [mm]ln^{2n-1}(x)[/mm]  ->  ...  [mm]ln^2(x)[/mm]  ->  [mm]ln(x)[/mm]  ->  [mm]\bruch{1}{x}[/mm].

Du siehst: wir meinen wirklich dasselbe.

Bezug
        
Bezug
grenzwertbetrachtung: unendlich mal null
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:19 Mo 29.11.2004
Autor: e.kandrai

Und zu deiner Rechnung: ja, in deiner Version stand [mm]\infty*0[/mm] da, was aber nicht definiert ist. Und dieses Problem umgeht man, indem man diesen Term [mm]\bruch{1}{x^2}[/mm] vom Zähler in den Nenner bringt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de