www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - größtmöglicher flächeninhalt
größtmöglicher flächeninhalt < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

größtmöglicher flächeninhalt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:35 Do 04.03.2004
Autor: Alayna

ich habe eine wunderschöne aufgabe aus unserem mathebuch, die ich leider mal wieder nicht lösen kann....
"ein rechteck hat die eckpunkte O(0/0), P(x/0), Q(x/y) und R(0/y). Dabei liegt Q im 1. Feld auf der Geraden mit der Gleichung y=-2x+5. Für welche Lage von Q hat es den größten Flächeninhalt?"

wichtig ist also nur der punkt Q. von seinen x und y koordinaten hängt der flächeninhalt ab. x*y muss natürlich größtmöglich sein. je größer x wird, desto kleiner wird y. je größer y wird, desto kleiner wird x. also muss man gewissermaßen ein mittel finden. allerdings hab ich keine ahnung, wo ich nun ansetzen muss....

        
Bezug
größtmöglicher flächeninhalt: Antwort
Status: (Antwort) fertig Status 
Datum: 17:54 Do 04.03.2004
Autor: Stefan

Liebe Alayna!

> ich habe eine wunderschöne aufgabe aus unserem mathebuch

Hmmh. Ironie oder nicht, das ist hier die Frage... ;-)

> die ich leider mal wieder nicht lösen kann....

Dafür sind wir ja da. :-)

>  "ein rechteck hat die eckpunkte O(0/0), P(x/0), Q(x/y) und
> R(0/y). Dabei liegt Q im 1. Feld auf der Geraden mit der
> Gleichung y=-2x+5. Für welche Lage von Q hat es den größten
> Flächeninhalt?"

  

> wichtig ist also nur der punkt Q. von seinen x und y
> koordinaten hängt der flächeninhalt ab.

[ok]


> x*y muss natürlich
> größtmöglich sein.

[ok]

Damit hast du die Aufgabe ja schon fast gelöst!

Die Funktion

[mm]A(x,y) = x\cdot y[/mm]

muss also maximiert werden.

Es ist eine Funktion mit zwei Unbekannten, das ist schlecht.

Wie können wir daraus eine Funktion mit einer Unbekannten machen (die wir dann mühelos ;-) maximieren können)?

Nun ja, wir haben ja noch eine Nebenbedingung!

Der Punkt [mm]\red{Q}[/mm] soll im ersten Quadranten auf der Gerade [mm]\red{y=-2x+5}[/mm] liegen.

Dann setzen wir doch die notwendige Bedingung [mm]y=-2x+5[/mm] einfach mal in unsere zu maximierende Funktion [mm]A(x,y)[/mm]ein. Wir erhalten eine Funktion, die nur von von einer Variablen, nämlich [mm]x[/mm],  abhängt:

[mm]A(x) = x\cdot (-2x+5) = -2x^2 + 5x[/mm].

Diese Funktion muss nun maximiert werden (für [mm]x>0[/mm]).

Das kannst du... :-)

Melde dich bitte mit deinem Ergebnis.

Liebe Grüße
Stefan

Bezug
                
Bezug
größtmöglicher flächeninhalt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:02 Do 04.03.2004
Autor: Alayna

hmm jaaaaaaaaaa......... dass man das einsetzen kann wollt ich grad noch ergänzen. aber du bist mir zuvorgekommen und mein pc hat mich im stich gelassen.
und dieses schöne "maximieren" wie du es nennst.... gerade davon habe ich keine ahnung. natürlich muss[mm] 5x [/mm]größer werden als der Betrag von [mm](-2x^2)[/mm]. aber dann erhalte ich noch kein maximum :o(

Bezug
                        
Bezug
größtmöglicher flächeninhalt: Antwort
Status: (Antwort) fertig Status 
Datum: 18:07 Do 04.03.2004
Autor: Stefan

Liebe Alayna!

Nun ja, wie bekommt man denn das Maximum einer Funktion raus?

Ableiten, Ableitung gleich 0 setzen, den gefundenen Wert in die zweite Ableitung einsetzen. Schon mal was davon gehört?

Ich fange mal an:

[mm]A(x)= -2x² + 5x[/mm]

[mm]\Rightarrow A'(x) = -4x + 5[/mm]

[mm]0 \stackrel{(!)}{=} -4x+5[/mm]

[mm]\Rightarrow x= \ldots[/mm]

[mm]A''(x) = \ldots[/mm]

Ist die zweite Ableitung an der Stelle kleiner als [mm]0[/mm] ?

[mm]\Rightarrow y = \ldots[/mm]

Na? ;-)

Liebe Grüße
Stefan

Bezug
                                
Bezug
größtmöglicher flächeninhalt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:11 Do 04.03.2004
Autor: Alayna

klar.. das hätte ich wissen müssen *argh*
jetzt schaff ich es auch... thx :o)

Bezug
                        
Bezug
größtmöglicher flächeninhalt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:11 Do 04.03.2004
Autor: Stefan

Liebe Alayna!

Oder hattet ihr noch keine Ableitungen?

Dann schau dir mal die Funktion

[mm]A(x) = -2x² + 5x[/mm]

an.

Es handelt sich um die Funktionsgleichung einer Parabel.

An welcher Stelle nimmt eine nach unten geöffnete Parabel den größten Funktionswert an?

Genau, am Scheitelpunkt!

Also berechnest du den Scheitelpunkt von

[mm]y=-2x² + 5x[/mm].

Kannst du das?

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de