www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - herleitung integralrechnung
herleitung integralrechnung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

herleitung integralrechnung: erklärung
Status: (Frage) beantwortet Status 
Datum: 10:42 Fr 10.12.2010
Autor: julee1783

Hallo ,
könnte mir jemand vll die Herleitung der integralrechnung erklären?
Und die Berechnung der Ober und der Untersumme?
Am besten in einzelnen Schritten für Doofies :)
wäre super lieb!! danke

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
herleitung integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:01 Fr 10.12.2010
Autor: leduart

Hallo julee und

           [willkommenmr]

Damit verbringen i.a. doch Lehrer im Unterricht einige Zeit. dass wir das einfach wiederholen macht ja nicht viel Sinn, wenn dus da nicht verstanden hast. Also schreib genauer auf, wo deine Schwierigkeit denn liegt. du kannst auch mal in wiki unter riemannintegral schauen, und dann sagen, was du da nicht verstehst.
Gruss leduart



Bezug
                
Bezug
herleitung integralrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:43 Fr 10.12.2010
Autor: julee1783

ja das stimmt ich habe mich damit auch eigentlich schon genauer auseinander gesetzt. Das Probllem ist nur das ich garkeinen ansatzpunkt habe um die Aufgaben zu lösen hatte als Hausaufgabe eine aufgabe bekommen wo wir im Intervall 0,b bei der funktion f(x) = [mm] x^2 [/mm] die untersumme bestimmen sollten. Nach langer Überlegung und hin und her versuchen war das auch kein Problem, nur sie sagte das es auch sein kann zum beispiel f(x) = [mm] 3x^2 [/mm] drankommen würde. Dann habe ich sie gefragt wie man das dann machen würde und daraufhin sagte sie ja einfach ausklammern. Allerdings kann ich mir unter einfach ausklammern nicht besonders viel vorstellen!!

Bezug
                        
Bezug
herleitung integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:45 Fr 10.12.2010
Autor: fred97


> ja das stimmt ich habe mich damit auch eigentlich schon
> genauer auseinander gesetzt. Das Probllem ist nur das ich
> garkeinen ansatzpunkt habe um die Aufgaben zu lösen hatte
> als Hausaufgabe eine aufgabe bekommen wo wir im Intervall
> 0,b bei der funktion f(x) = [mm]x^2[/mm] die untersumme bestimmen
> sollten. Nach langer Überlegung und hin und her versuchen
> war das auch kein Problem, nur sie sagte das es auch sein
> kann zum beispiel f(x) = [mm]3x^2[/mm] drankommen würde. Dann habe
> ich sie gefragt wie man das dann machen würde und
> daraufhin sagte sie ja einfach ausklammern. Allerdings kann
> ich mir unter einfach ausklammern nicht besonders viel
> vorstellen!!  


[mm] \integral_{0}^{b}{3x^2 dx}=3*\integral_{0}^{b}{x^2 dx} [/mm]

FRED

Bezug
                                
Bezug
herleitung integralrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:01 Fr 10.12.2010
Autor: julee1783

wir dürfen das nicht mit dieser formel machen sondern müssen das anhand der herleitung machen :(

Bezug
                                        
Bezug
herleitung integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:06 Fr 10.12.2010
Autor: Walde

Hi,

bei der Bildung der Untersumme, vorher in jedem Summanden 3 ausklammern.

Lg walde

Bezug
                                                
Bezug
herleitung integralrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:13 Fr 10.12.2010
Autor: julee1783

und wie macht man das ??
kann mir das mal jemand vorrechnen ich verstehe nicht wie ich anfangen soll ;(


Bezug
                                                        
Bezug
herleitung integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:25 Fr 10.12.2010
Autor: weightgainer

Vorrechnen nicht, aber vielleicht noch einen Hinweis geben.
Du musst ja die Summe der Flächeninhalte vieler Rechtecke berechnen. Die Fläche eines einzelnen Rechtecks ist die Breite (bestimmt durch die Anzahl der Rechtecke, die du dir aussuchst - die dann nachher gegen [mm] \infty [/mm] laufen soll) mal die Höhe, die durch die Funktionsgleichung bestimmt wird, weil dein Rechteck ja genau bis zum Funktionsgraphen reicht.
Bei [mm]f(x) = x^{2}[/mm] ist das also z.B. [mm]\bruch{1}{10} * f(1) = \bruch{1}{10} * 1^{2}[/mm]. In jeder Rechteckfläche steckt also als ein Faktor der Funktionsterm an einer bestimmten Stelle drin.

Wenn es jetzt [mm]f(x) = 185*x^{2}[/mm] sein soll, dann heißt das also, dass du bei der Berechnung JEDES Rechtecks bei der Höhe zusätzlich den Faktor 185 drin hast. Und wenn ein Faktor in JEDEM Summanden vorkommt, dann kann man den einfach ausklammern. Und das, was IN der Klammer übrig bleibt, hattest du dir dann ja schon mühevoll überlegt und solltest das deswegen auch noch einmal benutzen!

lg weightgainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de