www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - hermitesche Matrix
hermitesche Matrix < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

hermitesche Matrix: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:17 Mo 06.07.2009
Autor: chrissi2709

Aufgabe
[mm] \pmat{t & i \\ -i & t} [/mm] t [mm] \in \IR [/mm]
a) untersuche die Definitheit in abhängigkeit von t
b) Gib eine hermitesche 2 x " Matrix H an, die nicht pos. definit ist, wo aber die reelle Matrix S = Re(H) sehr wohl pos definit ist.

Hallo

also zu a) habe ich keine Frage die hab ich schon gelöst, ich hab sie nur dazugeschrieben, weils die erste Teilaufgabe ist und sie viell etwas mit der zweiten Teilaufgabe zu tun hat;
zu b)

wäre dann eine solche matrix die folgende
[mm] \pmat{1 & i \\ -i & 1} [/mm] ?
die Matrix ist ja hermitesch und im komplexen auch semi definit aber wenn ich nur den Realteil der Matrix nehme, wäre dies ja:
[mm] \pmat{1 & 0 \\ 0 & 1} [/mm]
oder ist das falsch?
diese wäre ja dann pos definit.

danke schon mal für die Antwort

lg

chrissi

        
Bezug
hermitesche Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 23:52 Mo 06.07.2009
Autor: TommyAngelo

Deine hermitesche Matrix ist aber positiv definit (die beiden Hauptminoren sind ja positiv), was sie ja nicht sein soll.

Bezug
                
Bezug
hermitesche Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:14 Di 07.07.2009
Autor: chrissi2709

aber H = [mm] \pmat{1 & i \\ -i & 1} [/mm] wäre doch pos semi definit, weil
[mm] det(H_1) [/mm] = 1
[mm] det(H_2) [/mm] = 0
=> also pos semi definit, da bei pos definit die Hauptminoren doch alle pos sein und [mm] \not= [/mm] 0.
Oder stimmt des ned?

lg chrissi

Bezug
                        
Bezug
hermitesche Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 17:15 Di 07.07.2009
Autor: angela.h.b.


>  Oder stimmt des ned?

Hallo,

doch, das stimmt.

Gruß v. Angela

Bezug
                        
Bezug
hermitesche Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 14:31 Mi 08.07.2009
Autor: TommyAngelo

Jo, stimmt.
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de