www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - hermitesche Matrizen
hermitesche Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

hermitesche Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:32 Fr 29.09.2006
Autor: Riley

Hallo!
Man kann ja zeigen das für hermitesche Matrizen A folgendes gilt:

[mm] \lambda_{min} \leq \frac{\overline{x^t} A x}{\overline{x^t}x} \leq \lambda_{max} [/mm] für alle x [mm] \in C^n, x\not= [/mm] 0. wobei [mm] \lambda [/mm] die EW von A sind.
Nun soll man zeigen, dass für solche hermitesche Matrizen aus dieser ungleichung folgt, dass
[mm] \lambda_{min} \leq min\{a_{11}, ... , a_{nn} \} [/mm]         und

[mm] \lambda_{max} \ge max\{a_{11}, ... , a_{nn} \} [/mm]

man sieht ja relativ schnell, dass wenn man für x die einheitsvektoren wählt, gilt: [mm] \lambda_{min} \leq a_{kk} \leq \lambda_{max} [/mm]

aber kann man auch zeigen, dass diese uglg für beliebige vektoren aus [mm] C^n [/mm] gilt??
und woher weiß man, dass das [mm] a_{kk} [/mm] gerade das minimum bzw max der menge ist?

viele grüße



        
Bezug
hermitesche Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:36 Fr 29.09.2006
Autor: ullim

Hi Riley,

ich glaube Du bist mit dem Beweis schon fertig, da die Ungleichung

[mm] \lambda_{min} \le a_{kk} \le \lambda_{max} [/mm] für alle k gilt.

Sei [mm] a_{k_0 k_0}=min(a_{11},...,a_{nn}) [/mm] und [mm] a_{k_1 k_1}=max(a_{11},...,a_{nn}) [/mm] dann gilt nämlich auch

[mm] \lambda_{min} \le a_{k_0 k_0} [/mm] und

[mm] \lambda_{max} \ge a_{k_1 k_1} [/mm]


mfg ullim



Bezug
                
Bezug
hermitesche Matrizen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 10:33 Sa 30.09.2006
Autor: Riley

Hi Ullim!
danke für deine anwort! stimmt, wenn es für alle [mm] a_{kk} [/mm] gilt, dann auch für das min oder max, danke =)

nur das mit den vektoren ist mir noch nicht klar. man soll ja zeigen, dass es für alle x [mm] \in C^n [/mm] gilt, aber ich hab es ja eigentlich nur für die einheitsvektoren gezeigt??

viele grüße
riley

Bezug
                        
Bezug
hermitesche Matrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:03 So 01.10.2006
Autor: felixf

Hallo Riley!

>  danke für deine anwort! stimmt, wenn es für alle [mm]a_{kk}[/mm]
> gilt, dann auch für das min oder max, danke =)
>  
> nur das mit den vektoren ist mir noch nicht klar. man soll
> ja zeigen, dass es für alle x [mm]\in C^n[/mm] gilt, aber ich hab es
> ja eigentlich nur für die einheitsvektoren gezeigt??

Das was fuer alle $x [mm] \in C^n$ [/mm] (du meinst sicher $x [mm] \in \IC^n \setminus \{ 0 \}$ [/mm] oder?) gilt? Die urspruengliche Gleichung [mm] $\lambda_{min} \le \frac{\overline{x}^t A x}{\overline{x}^t x} \le \lambda_{max}$? [/mm] In deiner urspruenglichen Frage hoerte es sich so an, als wenn du das schon annimmst bzw. schon weisst dass/warum es gilt.

LG Felix


Bezug
                                
Bezug
hermitesche Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:29 So 01.10.2006
Autor: Riley

Aufgabe
(i) Beweisen Sie, dass für hermitesche Matrizen A gilt:
[mm] \lambda_{min} \leq \bruch{\overline{x^t}Ax}{\overline{x^t}x} \leq \lambda_{max} [/mm] für alle x [mm] \in C^n [/mm] , x [mm] \not= [/mm] 0
Dabei bezeichne [mm] \lambda_{max} [/mm] bzw [mm] \lambda_{min} [/mm] den größten bzw kleinsten EW von A.
(ii) Zeigen Sie, dass für hermitesche Matrizen aus (i) folgt:
[mm] \lambda_{min} \leq min\{a_{11},..., a_{nn} \}, [/mm]
[mm] \lambda_{max} \ge max\{a_{11},...,a_{nn} \}. [/mm]

Hi Felix!
Ja genau, den ersten teil hab ich schon (mit einigen substitutionen...) bewiesen, also dass
(i) [mm] \lambda_{min} \leq \bruch{\overline{x^t}Ax}{\overline{x^t}x} \leq \lambda_{max} [/mm] für alle x [mm] \in C^n [/mm] , x [mm] \not= [/mm] 0 gilt.

der zweite teil (ii) war nun zu zeigen, dass für solche hermitesche Matrizen aus (i) weiter gilt:
[mm] \lambda_{min} \leq min\{a_{11},..., a_{nn} \}, [/mm]
[mm] \lambda_{max} \ge max\{a_{11},...,a_{nn} \}. [/mm]

jetzt hab ich ja nur gezeigt, dass wenn ich in (i) die einheitsvektoren einsetze (ii) gilt. meine frage ist aber, ob ich zeigen muss, dass (ii) gilt, egal welche vektoren ich in (i) einsetze??

viele grüße
riley



Bezug
                                        
Bezug
hermitesche Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:51 So 01.10.2006
Autor: felixf

Hallo Riley!

> (i) Beweisen Sie, dass für hermitesche Matrizen A gilt:
>  [mm]\lambda_{min} \leq \bruch{\overline{x^t}Ax}{\overline{x^t}x} \leq \lambda_{max}[/mm]
> für alle x [mm]\in C^n[/mm] , x [mm]\not=[/mm] 0
>  Dabei bezeichne [mm]\lambda_{max}[/mm] bzw [mm]\lambda_{min}[/mm] den
> größten bzw kleinsten EW von A.
>  (ii) Zeigen Sie, dass für hermitesche Matrizen aus (i)
> folgt:
>  [mm]\lambda_{min} \leq min\{a_{11},..., a_{nn} \},[/mm]
> [mm]\lambda_{max} \ge max\{a_{11},...,a_{nn} \}.[/mm]
>  Hi Felix!
>  Ja genau, den ersten teil hab ich schon (mit einigen
> substitutionen...) bewiesen, also dass
>  (i) [mm]\lambda_{min} \leq \bruch{\overline{x^t}Ax}{\overline{x^t}x} \leq \lambda_{max}[/mm]
> für alle x [mm]\in C^n[/mm] , x [mm]\not=[/mm] 0 gilt.
>  
> der zweite teil (ii) war nun zu zeigen, dass für solche
> hermitesche Matrizen aus (i) weiter gilt:
>  [mm]\lambda_{min} \leq min\{a_{11},..., a_{nn} \},[/mm]
> [mm]\lambda_{max} \ge max\{a_{11},...,a_{nn} \}.[/mm]
>  
> jetzt hab ich ja nur gezeigt, dass wenn ich in (i) die
> einheitsvektoren einsetze (ii) gilt. meine frage ist aber,
> ob ich zeigen muss, dass (ii) gilt, egal welche vektoren
> ich in (i) einsetze??

Den zweiten Teil hast du doch schon laengst gezeigt. Da kommt doch ueberhaupt kein $c$ mehr vor, also warum solltest du da beliebige $c$ einsetzen wollen? Es reicht doch voellig, passende $c$ (hier: Einheitsvektoren) in (i) einzusetzen, da du damit die Ungleichungen aus (ii) bekommst.

LG Felix


Bezug
                                                
Bezug
hermitesche Matrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:55 So 01.10.2006
Autor: Riley

hi felix!

okay, sehr gut. danke dir vielmals!

viele grüße
riley =)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de