www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - heston modell
heston modell < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

heston modell: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:27 Fr 25.03.2011
Autor: vivo

Hallo Leute,

weiß jemand ob es eine explizite lösung im heston modell gibt?

Also ob man [mm] $X_t$ [/mm] in dem Modell exakt angeben kann oder nur mit numerischen Methoden.

Vielen Dank im Voraus

        
Bezug
heston modell: Antwort
Status: (Antwort) fertig Status 
Datum: 19:22 Fr 25.03.2011
Autor: gfm


> Hallo Leute,
>  
> weiß jemand ob es eine explizite lösung im heston modell
> gibt?
>  
> Also ob man [mm]X_t[/mm] in dem Modell exakt angeben kann oder nur
> mit numerischen Methoden.
>  
> Vielen Dank im Voraus

Eine geschlossene Lösung gibt es nicht. Man kann aber Verteilung und Momente berechnen.

LG

gfm

Bezug
                
Bezug
heston modell: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:20 Sa 26.03.2011
Autor: vivo

Hallo,

danke! Wenn man die Verteilung von [mm] $X_t$ [/mm] bestimmen kann, hat man dann nicht eine geschlossene Lösung, da Verteilung [mm] $X_t$ [/mm] eindeutig festlegt ??? Oder denk ich da falsch?

Danke! Grüße



Bezug
                        
Bezug
heston modell: Antwort
Status: (Antwort) fertig Status 
Datum: 21:20 Sa 26.03.2011
Autor: gfm


> Hallo,
>  
> danke! Wenn man die Verteilung von [mm]X_t[/mm] bestimmen kann, hat
> man dann nicht eine geschlossene Lösung, da Verteilung [mm]X_t[/mm]
> eindeutig festlegt ??? Oder denk ich da falsch?
>  
> Danke! Grüße
>  
>  

Nein, die Verteilung der [mm] X_t [/mm] liegt nicht deren fest.

LG

gfm



Bezug
                                
Bezug
heston modell: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 21:56 Sa 26.03.2011
Autor: vivo

Hallo,

danke, aber ich versteh deine antwort jetzt nicht so ganz.

Also man kann die Verteilung der [mm] $X_t$ [/mm] bestimmen, oder was meinst Du?

Und wenn das so ist, warum legt dies dann [mm] $X_t$ [/mm] nicht eindeutig fest?

danke

Bezug
                                        
Bezug
heston modell: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:22 Mo 28.03.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                                        
Bezug
heston modell: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:26 Mi 13.04.2011
Autor: gfm


> Hallo,
>  
> danke, aber ich versteh deine antwort jetzt nicht so ganz.
>  
> Also man kann die Verteilung der [mm]X_t[/mm] bestimmen, oder was
> meinst Du?
>  
> Und wenn das so ist, warum legt dies dann [mm]X_t[/mm] nicht
> eindeutig fest?
>  

Es doch a priori nicht klar, dass das Abändern einer Teilmenge von Pfaden eines Prozesses immer dessen endlichdimensionale Familie von Verteilungen ändert. Stichwort "Modifikation" oder auch "Äquivalenz" von Prozessen.

LG

gfm

Bezug
                                                
Bezug
heston modell: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:07 Do 14.04.2011
Autor: vivo

jo, alles klar.

Danke Dir!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de