www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - holomorphe fortsetzbarkeit
holomorphe fortsetzbarkeit < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

holomorphe fortsetzbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:08 Do 11.06.2009
Autor: Bodo0686

Aufgabe
Für welche n [mm] \in \IZ [/mm] kann [mm] f_n [/mm] : [mm] \IC [/mm] \ {0} - > [mm] \IC, f_n(z) [/mm] := [mm] z^n(cos(z)-1) [/mm] in den Nullpunkt hinein holomorph fortgesetzt werden? Geben Sie die holomorphe Fortsetzung im Existenzfalle an.

Ich habe mir folgendes überlegt.

Wenn der Grenzwert der Funktion existiert, dann habe ich doch holomorphe fortsetzbarkeit?

Bew.: [mm] \limes_{z\rightarrow 0} z^n(cos(z)-1) [/mm] = ?

Ich definiere mir eine Folge für z [mm] \to [/mm] (1/n)

[mm] \Rightarrow \limes_{z\rightarrow 0} z^n(cos(z)-1) [/mm] = [mm] \limes_{n\rightarrow 0} (\frac{1}{n})^n (cos(\frac{1}{n})-1) [/mm] = [mm] \limes_{n\rightarrow 0} (\frac{1}{n})^n [/mm]   *    [mm] \limes_{n\rightarrow 0} (cos(\frac{1}{n})-1) [/mm]

[mm] \Rightarrow [/mm] 0 * 0 = 0

Grenzwert ex, damit holomorph fortsetzbar. Wenn ich mir den Cosinus aufmale, hat er ja als Grenzwerte 1 und -1 ... da stimmt doch irgendwas nicht...

Könnt ihr mir evtl weiterhelfen?

Danke und Grüße

        
Bezug
holomorphe fortsetzbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 04:47 Fr 12.06.2009
Autor: felixf

Hallo!

> Für welche n [mm]\in \IZ[/mm] kann [mm]f_n[/mm] : [mm]\IC[/mm] \ {0} - > [mm]\IC, f_n(z)[/mm]
> := [mm]z^n(cos(z)-1)[/mm] in den Nullpunkt hinein holomorph
> fortgesetzt werden? Geben Sie die holomorphe Fortsetzung im
> Existenzfalle an.
>  Ich habe mir folgendes überlegt.
>  
> Wenn der Grenzwert der Funktion existiert, dann habe ich
> doch holomorphe fortsetzbarkeit?
>  
> Bew.: [mm]\limes_{z\rightarrow 0} z^n(cos(z)-1)[/mm] = ?
>  
> Ich definiere mir eine Folge für z [mm]\to[/mm] (1/n)

Jetzt verwendest du $n$ doppelt!

>  
> [mm]\Rightarrow \limes_{z\rightarrow 0} z^n(cos(z)-1)[/mm] =
> [mm]\limes_{n\rightarrow 0} (\frac{1}{n})^n (cos(\frac{1}{n})-1)[/mm]
> = [mm]\limes_{n\rightarrow 0} (\frac{1}{n})^n[/mm]   *    
> [mm]\limes_{n\rightarrow 0} (cos(\frac{1}{n})-1)[/mm]
>
> [mm]\Rightarrow[/mm] 0 * 0 = 0

Nun: warum ist denn [mm] $\lim_{m\to\infty} (\frac{1}{m})^n [/mm] = 0$? Wenn z.B. $n = 0$ ist ist der Grenzwert 1, und fuer $n < 0$ ist der Grenzwert [mm] $\infty$. [/mm]

Ausserdem: du hast hier genau eine Folge betrachtet.

> Grenzwert ex, damit holomorph fortsetzbar. Wenn ich mir den
> Cosinus aufmale, hat er ja als Grenzwerte 1 und -1 ... da
> stimmt doch irgendwas nicht...

Was verstehst du hier unter Grenzwert?

Setz doch mal die Reihenentwicklung vom Kosinus in [mm] $\cos(z) [/mm] - 1$ ein. Hier kannst du jetzt [mm] $z^2$ [/mm] ausklammern und erhaelst als Rest eine holomorphe Funktion, die in $z = 0$ keine Nullstelle hat. Nennen wir sie $h$.

Damit hast du also [mm] $z^n (\cos(z) [/mm] - 1) = [mm] z^{n + 2} [/mm] h(z)$.

Fuer [mm] $z_m \to [/mm] 0$ gilt [mm] $h(z_m) \to [/mm] h(0) [mm] \neq [/mm] 0$. Jetzt unterscheide zwischen $n + 2 > 0$, $n + 2 = 0$ und $n + 2 < 0$. Was stellst du fuer das Verhalten von [mm] $f(z_n)$ [/mm] fest?

LG Felix


Bezug
                
Bezug
holomorphe fortsetzbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:35 Di 22.06.2010
Autor: Doc1083

Hallo, ich buddel den nur wieder aus, da ich genau die gleiche Aufgabe habe :)

Hab mir das Ganze mal angeschaut und die Tipps beherzigt. Zunächst die Frage ob ich bei h(z) richtig liege:

[mm] cos(z)-1=\summe_{k=0}^{\infty}(-1)^k*\bruch{z^{2k}}{(2k)!}-1=z^2\summe_{k=0}^{\infty}(-1)^k*\bruch{z^{k}}{(2k)!}-1=z^2*h(z) [/mm] stimmt das so? Man könnte ja die -1 noch rein ziehen in die Summe, aber dann ist [mm] h(z)=\summe_{k=1}^{\infty}(-1)^k*\bruch{z^{k}}{(2k)!} [/mm] und somit nicht mehr [mm] h(0)\not=0. [/mm]

Wenn also gilt [mm] z^{n+2}*h(z) [/mm] und [mm] z_m\to0, [/mm] dann ist [mm] h(z_m) \to [/mm] h(0) [mm] \neq [/mm] 0

n+2>0 [mm] \Rightarrow f(z_m)\to0 [/mm]
n+2=0 [mm] \Rightarrow f(z_m)\neq0 [/mm]
n+2<0 [mm] \Rightarrow f(z_m)\to\infty [/mm]

Hieße das für n=-2 ist die Funktion holomorph fortsetzbar?

Vielen Dank für Hilfen.

Doc

Bezug
                        
Bezug
holomorphe fortsetzbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 22:40 Di 22.06.2010
Autor: felixf

Moin!

> Hallo, ich buddel den nur wieder aus, da ich genau die
> gleiche Aufgabe habe :)
>  
> Hab mir das Ganze mal angeschaut und die Tipps beherzigt.
> Zunächst die Frage ob ich bei h(z) richtig liege:
>  
> [mm]cos(z)-1=\summe_{k=0}^{\infty}(-1)^k*\bruch{z^{2k}}{(2k)!}-1=z^2\summe_{k=0}^{\infty}(-1)^k*\bruch{z^{k}}{(2k)!}-1=z^2*h(z)[/mm]

Moment, seit wann ist [mm] $z^2 z^k [/mm] = [mm] z^{2 k}$?! [/mm]

> stimmt das so? Man könnte ja die -1 noch rein ziehen in
> die Summe, aber dann ist
> [mm]h(z)=\summe_{k=1}^{\infty}(-1)^k*\bruch{z^{k}}{(2k)!}[/mm] und
> somit nicht mehr [mm]h(0)\not=0.[/mm]

Gerade bei deinem $h$ ist $h(0) = 0$, da die Reihe keinen konstanten Term hat.

> Wenn also gilt [mm]z^{n+2}*h(z)[/mm] und [mm]z_m\to0,[/mm] dann ist [mm]h(z_m) \to[/mm]
> h(0) [mm]\neq[/mm] 0
>  
> n+2>0 [mm]\Rightarrow f(z_m)\to0[/mm]
>  n+2=0 [mm]\Rightarrow f(z_m)\neq0[/mm]
>  
> n+2<0 [mm]\Rightarrow f(z_m)\to\infty[/mm]
>  
> Hieße das für n=-2 ist die Funktion holomorph
> fortsetzbar?

Und ebenso fuer $n + 2 > 0$, also $n > -2$.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de