www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - homogene DGL - Definition?
homogene DGL - Definition? < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

homogene DGL - Definition?: Was genau heißt homogen
Status: (Frage) beantwortet Status 
Datum: 20:24 Do 31.03.2011
Autor: BenJourno

Hi,
also die Frage mag auf den ersten Blick etwas dumm sein, aber ich habe nirgendwo eine Antwort dazu gefunden, weder in Büchern, noch im Internet noch in Skripten.

Die Definition ist ja, dass bei einer homogenen DGL der Störterm b(x)=0 wird.
Meine Frage ist nun, bezieht sich der Störterm NUR auf Terme, in denen auch x drin sein MUSS oder sind Konstanten auch dem Störterm zuzuordnen?

Also konrekt, ist z.B. y'=y+1 homogen oder nicht?
Über eine Trennung der Variablen wäre das Ding einfach zu lösen, aber gilt 1 hier als Störterm, oder nicht?

Vielen Dank :)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
homogene DGL - Definition?: Antwort
Status: (Antwort) fertig Status 
Datum: 20:52 Do 31.03.2011
Autor: MathePower

Hallo BenJourno,

> Hi,
>  also die Frage mag auf den ersten Blick etwas dumm sein,
> aber ich habe nirgendwo eine Antwort dazu gefunden, weder
> in Büchern, noch im Internet noch in Skripten.
>  
> Die Definition ist ja, dass bei einer homogenen DGL der
> Störterm b(x)=0 wird.
>  Meine Frage ist nun, bezieht sich der Störterm NUR auf
> Terme, in denen auch x drin sein MUSS oder sind Konstanten
> auch dem Störterm zuzuordnen?


Konstanten sind auch ein Störterm.


>  
> Also konrekt, ist z.B. y'=y+1 homogen oder nicht?


Diese DGL ist nicht homogen, da der Störterm eine von der
Null-Funktion verschiedene Funktion ist.


>  Über eine Trennung der Variablen wäre das Ding einfach
> zu lösen, aber gilt 1 hier als Störterm, oder nicht?


Die "1" gilt hier als Störterm.

Da "1" keine Funktion von x ist,
stört sie auch nicht bei der Lösung der DGL.

D.h. Du kannst hier betrachten:

[mm]\bruch{y'}{y+1}=1[/mm]

[mm]\rightarrow \bruch{1}{y+1} \ dy = dx[/mm]

Und nun kannst Du das integrieren.


>  
> Vielen Dank :)
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruss
MathePower

Bezug
                
Bezug
homogene DGL - Definition?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:12 Do 31.03.2011
Autor: BenJourno

Super vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de