www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - homogenes LGS
homogenes LGS < Lineare Gleich.-sys. < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

homogenes LGS: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:34 Di 12.02.2008
Autor: karibikfink

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Hallo, wie löst man dashomogene LGS am intelligentesten?

[mm] \begin{bmatrix} -1 & 0 & 0 & 0,05 & 0,3\\ 0,25 & -1& 0 & 0 &0\\ 90 & 40 & -1 & 0 & 0\\ 0 & 0 & 0,05 & -1 & 0\\ 0 & 0 & 0 & 0,5 & -1 \end{bmatrix} [/mm]

Herauskommen muss:
[mm] \begin{pmatrix} 0,4\\ 0,1 \\ 40 \\ 2 \\1\end{pmatrix} [/mm]

        
Bezug
homogenes LGS: Antwort
Status: (Antwort) fertig Status 
Datum: 17:39 Di 12.02.2008
Autor: angela.h.b.


> Hallo, wie löst man dashomogene LGS am intelligentesten?

Hallo,

ob's das Intelligenteste ist, sei dahingestellt, auf jeden Fall würde ich so recht schnell zum Ergebnis kommen: Matrix auf Zeilenstufenform bringen und dann das Ergebnis ablesen.

Gruß v. Angela

Bezug
                
Bezug
homogenes LGS: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:11 Di 12.02.2008
Autor: karibikfink

wie funktioniert das? Was ist eine Zeilenstufenform und wie sehe sie hier aus? Kann man das Ergebnis dann tatsächlich einfach "ablesen"??

Bezug
                        
Bezug
homogenes LGS: Zeilenstufenform
Status: (Antwort) fertig Status 
Datum: 18:17 Di 12.02.2008
Autor: clwoe

Hi,

das ist alles nicht innerhalb von 5 Minuten oder in einem Satz zu erklären.

Im ersten Semester an der Uni beschäftigt man sich damit, also glaub mir, da gibt es einiges dazu zu sagen.

Probiere diesen Link hier.

http://www.arndt-bruenner.de/mathe/9/lgsbsp2.htm

Ausführlicher geht es nicht mehr.

Gruß,
clwoe


Bezug
                                
Bezug
homogenes LGS: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 18:25 Di 12.02.2008
Autor: karibikfink

Das zu lösende LGS ist eine Schulaufgabe. Kann mir jemand vormachen oder sagen, wie ich das lösen soll? An für sich weiß ich, wie man LGS löst, hierbei komm ich nur nicht weiter! Kann mir daher jemand bitte sagen, wie ich hier fortfahren soll?

Bezug
                                        
Bezug
homogenes LGS: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:34 Di 12.02.2008
Autor: mg07

Gausssches Additionsverfahren anwenden, also Zeilen miteinander addieren, voneinander subtrahieren und eben auf diese Diagonalform bringen.

x y z  
1 0 0 | Wert von x
0 1 0 | Wert von y
0 0 1 | Wert von z

Das dauert häufig etwas und man kann sich leicht verrechnen.

Gutes Gelingen

Bezug
                                        
Bezug
homogenes LGS: Antwort
Status: (Antwort) fertig Status 
Datum: 18:35 Di 12.02.2008
Autor: angela.h.b.

Hallo,

Zeilenstufenform scheinst Du also nicht zu wollen.

Wie löst Du denn sonst Gleichungssysteme?
Es wäre schon sinnvoll, wenn wir das wüßten.

Wie weit bist Du mit diesem Dir vorliegenden GS gekommen? Rechne mal vor!

Wo genau liegt Dein Problem?

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de