www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - homogenes lineares DGL-System
homogenes lineares DGL-System < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

homogenes lineares DGL-System: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 04:11 Do 21.06.2012
Autor: Gnocchi

Aufgabe
Betrachten Sie das Differentialgleichungssystem:
[mm] (\*\*,H) y_1' [/mm] = [mm] y_2 [/mm] und [mm] y_2'=0 [/mm]
a.) Schreiben Sie [mm] (\*\*,H) [/mm] in Matrixform
b.) Bestimmen Sie alle Lösungen von (**,H)
c.) Bestimmen Sie eine Basis der Lösungsmenge zu [mm] (\* \*,H) [/mm]

Hab mir nun bisher überlegt:
a.)Da [mm] y_2'=0, [/mm] muss ja [mm] y_1'= c_1 [/mm] sein, wobei [mm] c_1 [/mm] eine Konstante ist. Zudem müsste dann [mm] y_o'=c_1*x_1+c_2 [/mm] sein. [mm] c_2 [/mm] ist wieder eine Konstante und [mm] x_1 [/mm] eine Variable.
Für die Matrixform würde dann folgen:
[mm] \pmat{y_o \\ y_1 \\ y_2 }^{'} [/mm] = [mm] \pmat{ 0 & x_1 & 0 \\ 0 & 0 & 1\\ 0 & 0 & 0} [/mm] * [mm] \pmat{y_o \\ y_1 \\ y_2 } [/mm] + [mm] \pmat{c_2 \\ 0 \\ 0 } [/mm]
Da das System homogen ist, muss [mm] c_2 [/mm] = 0 sein.
b.)Wir haben ja [mm] \pmat{y_o \\ y_1 \\ y_2 } [/mm] = [mm] \pmat{c_1*x_1 \\ c_1 \\ 0 } [/mm]
[mm] x_1 [/mm] ist hierbei ja unsere Variable und die Lösungen für das homogene System setzen sich ja dann aus den verschiedenen Werten zusammen, die man für [mm] c_1 [/mm] einsetzen kann.
c.) Da bin ich noch am grübeln. Eine Basis ist ja ein Erzeugendessystem von linear unabhängigen Vektoren. Linear unabhängig sind die Vektoren ja, sieht man ja durch hinsehen. Nur die Nullzeite irritiert mich. Oder kann die so stehen bleiben?!
Gibt es sonst noch was bei a.) oder b.) was falsch oder verbesserungswürdig ist?

        
Bezug
homogenes lineares DGL-System: Antwort
Status: (Antwort) fertig Status 
Datum: 10:39 Do 21.06.2012
Autor: Blech

Hi,

vielleicht ist mir nur eure Schreibweise nicht geläufig, aber ich sehe nicht, warum bei der Aufgabe überhaupt ein [mm] $y_0$ [/mm] auftauchen sollte

[mm] $\vektor{y_1'\\ y_2'} [/mm] = [mm] \pmat{0& 1\\ 0& 0} \vektor{y_1\\ y_2}$ [/mm]

ciao
Stefan



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de