ich nochmal < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
danke marc für die schnelle hilfe! ich habe allerdings noch eine aufgabe:
gegeben ist [mm]f(x) = 2,2 * 0,75^x[/mm]! im punkt p(4/0,696093759) wird die tangente t(x) an die kurve der funktion gelegt. wo schneidet t(x) die x-Achse?
wenn ich nochmal so schnell hilfe bekommen könnte wäre das sehr fabelhaft! Danke
ilovetowlie
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:41 Mo 19.01.2004 | Autor: | Marc |
Hallo ihatetowlie,
> danke marc für die schnelle hilfe! ich habe allerdings noch
Meinst du, die vorherige Aufgabe war so richtig gelöst?
> eine aufgabe:
> gegeben ist [mm]f(x) = 2,2 * 0,75^x[/mm]! im punkt p(4/0,696093759)
> wird die tangente t(x) an die kurve der funktion gelegt. wo
> schneidet t(x) die x-Achse?
> wenn ich nochmal so schnell hilfe bekommen könnte wäre das
Kein Problem. Gern gesehen hier im MatheRaum sind übrigens auch Lösungsanfänge, mit denen man dann weiter arbeiten kann. Hier nehme ich jetzt mal an, dass du gar keine Idee hast, diese Aufgabe zu lösen.
Zunächst stelle ich fest: Eine Tangente ist eine stinknormale Gerade bzw. Lineare Funktion mit der Gleichung [mm] t(x) = m*x + b [/mm].
Außerdem berührt die Tangente die Funktion in einem Punkt (der bei dieser Aufgabe bereits gegeben ist).
Zwischen Funktion und Tangente gibt es auch noch einen weiteren, ganz wichtigen Zusammenhang: Die Steigung der Tangente ist identisch mit der Steigung der Funktion im Berührpunkt.
Nun gibt gerade die 1. Ableitung einer Funktion diese Steigungen an; die 1. Ableitung ist nichts anderes als eine "Sammlung" sämtlicher Tangentensteigungen einer Funktion. Das können wir jetzt direkt ausnutzen:
Gesucht ist [mm] m [/mm] ("Steigung") und [mm] b [/mm] ("Achsenabschnitt") der Tangentengleichung.
Für [mm] m [/mm] gilt aber nach dem zuvor Gesagten: [mm] m = f'(4) [/mm], [mm] m [/mm] ist also der Wert der 1. Ableitung an der Stelle des Berührpunktes. Hier mußt du nur noch die 1. Ableitung berechnen, und sodann die 4 einsetzen.
Nun verläuft die Tangente logischerweise auch durch ihren Berührpunkt mit der Funktion, d.h., wenn die Koordinaten des Berührpunktes in die Tangentengleichung eingesetzt werden, muß sich eine wahre Aussage ergeben. Dies können wir umgekehrt dazu benutzen, den Achsenabschnitt [mm] b [/mm] so zu bestimmen, dass der Berührpunkt auf der Geraden liegt:
[mm] P(x_p|y_p) \in t [/mm] [mm]\Rightarrow y_p = m*x_p + b [/mm] [mm]\gdw b = y_p - m*x_p [/mm].
Das war's! Diese letzte Gleichung enthält nur noch gegebene ([mm] x_p [/mm] und [mm] y_p [/mm]) bzw. mittlerweile berechnete Größen ([mm] m [/mm]), das [mm] b [/mm] ist also jetzt bestimmt.
Magst du es jetzt mal nach diesem Fahrplan selbst versuchen? Bei Problemen kannst du dich ja wieder an den MatheRaum wenden, oder zur Kontrolle deines Ergebnisses.
> ilovetowlie
Hmm, so richtig weißt du noch nicht, wie du zum Lügen stehen sollst, oder?
|
|
|
|
|
danke hat mir geholfen!
mfg
towelie
PS: towelie (ich habs zuerst falsch geschrieben) ist ein character bei south park, wie der name schon sagt ein handtuch.
|
|
|
|