impl. Fkt Auflösbarkeit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:56 Sa 07.07.2012 | Autor: | Sup |
Aufgabe | Wir betrachten die Fkt. [mm] f(x,y_1,y_2)= \vektor{x^3+y_1^3+y_2^3-7\\ xy_1+y_1y_2+xy_2+2}. [/mm] Untersuchen sie Auflösbarkeit nach [mm] y_1 [/mm] und [mm] y_2 [/mm] in der Nähe der Nullstelle (2,-1,0) der Fkt f. Berechnen sie, fall möglich, die Ableitungen der Fkt [mm] g_1(x)=y_1 [/mm] und [mm] g_2(x)=y_2 [/mm] in 2. |
Hi,
hab mich grad ans Lernen für meine Mathe Klausur gemacht und würde euch bitten über meine Lösung kurz drüber zu schauen bzw. mir auf die Sprünge zu helfen.
Zuerst habe ich die partielle Ableitung von f nach [mm] y_1 [/mm] und [mm] y_2 [/mm] berechnet
[mm] D=\pmat{ 3y_1^2 & 3y_2^2 \\ x+y_2 & x+y_1 }. [/mm] Nun muss ich ziegen, dass die Ableitung im Punkt (2,-1,0) [mm] \not= [/mm] 0 ist, dies ist der Fall, denn [mm] det(D)=3y_1^2(x+y1)-3y_2^2(x+y_2)=3 \not= [/mm] 0.
Wie berechnet man nun die gesuchten Ableitungen?
Ich kenn die Formel g'(x)= - [mm] \bruch{\partial f / \partial x}{\partial f / \partial y } [/mm] für eine Funktion f(x,y) die nach [mm] \IR [/mm] abbildet, aber wie wende ich die an wenn die Funktion ein Vektor ist und in unserem Fall nach [mm] \IR^2 [/mm] abbildet?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:17 Sa 07.07.2012 | Autor: | fred97 |
> Wir betrachten die Fkt. [mm]f(x,y_1,y_2)= \vektor{x^3+y_1^3+y_2^3-7\\ xy_1+y_1y_2+xy_2+2}.[/mm]
> Untersuchen sie Auflösbarkeit nach [mm]y_1[/mm] und [mm]y_2[/mm] in der
> Nähe der Nullstelle (2,-1,0) der Fkt f.
Es geht doch wohl um die Auflösbarkeit der Gl.
[mm] f(x,y_1,y_2)=(0,0)^T
[/mm]
> Berechnen sie,
> fall möglich, die Ableitungen der Fkt [mm]g_1(x)=y_1[/mm] und
> [mm]g_2(x)=y_2[/mm] in 2.
>
> Hi,
> hab mich grad ans Lernen für meine Mathe Klausur gemacht
> und würde euch bitten über meine Lösung kurz drüber zu
> schauen bzw. mir auf die Sprünge zu helfen.
>
> Zuerst habe ich die partielle Ableitung von f nach [mm]y_1[/mm] und
> [mm]y_2[/mm] berechnet
>
> [mm]D=\pmat{ 3y_1^2 & 3y_2^2 \\ x+y_2 & x+y_1 }.[/mm] Nun muss ich
> ziegen, dass die Ableitung im Punkt (2,-1,0) [mm]\not=[/mm] 0 ist,
> dies ist der Fall, denn [mm]det(D)=3y_1^2(x+y1)-3y_2^2(x+y_2)=3 \not=[/mm]
> 0.
>
> Wie berechnet man nun die gesuchten Ableitungen?
> Ich kenn die Formel g'(x)= - [mm]\bruch{\partial f / \partial x}{\partial f / \partial y }[/mm]
> für eine Funktion f(x,y) die nach [mm]\IR[/mm] abbildet, aber wie
> wende ich die an wenn die Funktion ein Vektor ist und in
> unserem Fall nach [mm]\IR^2[/mm] abbildet?
Differenziere die Gleichungen
[mm] x^3+g_(x)^3+g_2(x)^3-7=0
[/mm]
und
[mm] xg_1(x)+g_1(x)g_2(x)+xg_2(x)+2=0
[/mm]
nach x.
FRED
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 19:34 Sa 07.07.2012 | Autor: | Sup |
> > Wir betrachten die Fkt. [mm]f(x,y_1,y_2)= \vektor{x^3+y_1^3+y_2^3-7\\ xy_1+y_1y_2+xy_2+2}.[/mm]
> > Untersuchen sie Auflösbarkeit nach [mm]y_1[/mm] und [mm]y_2[/mm] in der
> > Nähe der Nullstelle (2,-1,0) der Fkt f.
>
>
> Es geht doch wohl um die Auflösbarkeit der Gl.
>
> [mm]f(x,y_1,y_2)=(0,0)^T[/mm]
Korrekt
> > Wie berechnet man nun die gesuchten Ableitungen?
> > Ich kenn die Formel g'(x)= - [mm]\bruch{\partial f / \partial x}{\partial f / \partial y }[/mm]
> > für eine Funktion f(x,y) die nach [mm]\IR[/mm] abbildet, aber wie
> > wende ich die an wenn die Funktion ein Vektor ist und in
> > unserem Fall nach [mm]\IR^2[/mm] abbildet?
>
> Differenziere die Gleichungen
>
> [mm]x^3+g_(x)^3+g_2(x)^3-7=0[/mm]
ergibt dann [mm] g_1(x)=7-x^3-g_2(x)^3 \Rightarrow g_1'(x) [/mm] = [mm] -3x^2-3g_2(x)^2g_2'(x)
[/mm]
> und
>
> [mm]xg_1(x)+g_1(x)g_2(x)+xg_2(x)+2=0[/mm]
>
> nach x.
[mm] g_2(x)= \bruch{-2-xg_1(x)}{g_1(x)+x} [/mm] und dass dann entsprechend Quotientenregel ableiten?
|
|
|
|
|
Hallo Sup,
> > > Wir betrachten die Fkt. [mm]f(x,y_1,y_2)= \vektor{x^3+y_1^3+y_2^3-7\\ xy_1+y_1y_2+xy_2+2}.[/mm]
> > > Untersuchen sie Auflösbarkeit nach [mm]y_1[/mm] und [mm]y_2[/mm] in der
> > > Nähe der Nullstelle (2,-1,0) der Fkt f.
> >
> >
> > Es geht doch wohl um die Auflösbarkeit der Gl.
> >
> > [mm]f(x,y_1,y_2)=(0,0)^T[/mm]
>
> Korrekt
>
> > > Wie berechnet man nun die gesuchten Ableitungen?
> > > Ich kenn die Formel g'(x)= - [mm]\bruch{\partial f / \partial x}{\partial f / \partial y }[/mm]
> > > für eine Funktion f(x,y) die nach [mm]\IR[/mm] abbildet, aber wie
> > > wende ich die an wenn die Funktion ein Vektor ist und in
> > > unserem Fall nach [mm]\IR^2[/mm] abbildet?
> >
> > Differenziere die Gleichungen
> >
> > [mm]x^3+g_(x)^3+g_2(x)^3-7=0[/mm]
> ergibt dann [mm]g_1(x)=7-x^3-g_2(x)^3 \Rightarrow g_1'(x)[/mm] =
> [mm]-3x^2-3g_2(x)^2g_2'(x)[/mm]
>
Das stimmt nicht ganz.
Es ist doch
[mm]g_1(x)=\wurzel[3]{7-x^3-g_2(x)^3}[/mm]
> > und
> >
> > [mm]xg_1(x)+g_1(x)g_2(x)+xg_2(x)+2=0[/mm]
> >
> > nach x.
>
> [mm]g_2(x)= \bruch{-2-xg_1(x)}{g_1(x)+x}[/mm] und dass dann
> entsprechend Quotientenregel ableiten?
Besser Du belässt die Gleichungen in der obigen Form.
Differenzierst diese nach und löst dann nach [mm]g_{1}'\left(x\right), \ g_{2}'\left(x\right)[/mm] auf.
Gruss
MathePower
|
|
|
|