www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - implizite funktionen
implizite funktionen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

implizite funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:59 Di 04.07.2006
Autor: AriR

(frage zuvor nicht gestellt)

Hey leute,

wir hatten unter anderem in der vorlesung das kapitel "implizite Funktionen" (nach dem Forster)

Also ich hab das kapitel so verstanden, dass man für fkt [mm] f:U\to\IR [/mm] wobei [mm] U\subset\IR^2 [/mm]

die parametert die der fkt übergeben werden, in abhängigkeit von einem schreiben möchte, (also zB (x,g(x)) so das f(x,g(x)) immer 0 ergibt. und weiter haben will man das g so wählen zB dass f(x,g(x) zB immer 2 ergibt usw. und das geht halt nicht immer für alle x sonder manchmal nur für eine bestimmte umgebung und das war auch schon das ganze kapitel.

habe ich da jetzt irgendwas wichtiges vergessen?

danke und gruß
Ari

        
Bezug
implizite funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:11 Di 04.07.2006
Autor: MatthiasKr

Hallo AriR,

deine darstellung ist vielleicht ein wenig zu sehr vereinfacht, aber im grunde stimmts... ;-) allerdings gilt der satz unter viel allgemeineren voraussetzungen, nämlich für Fkten. [mm] $F:\IR^m\times \IR^n\to \IR^n$ [/mm] (F kann natürlich auch nur auf Teilmengen definiert sein). Hat man dann eine Nullstelle [mm] $(x_0,y_0)$ [/mm]  mit [mm] $F(x_0,y_0)=0$ [/mm] und ist [mm] $\frac{\partial F}{\partial y}(x_0,y_0)$ [/mm] invertierbar, so lässt sich die nullstellen-Menge lokal um diesen Punkt als Graph in $x$ darstellen.

Als ebensowichtige Folgerung ergibt sich der Satz von der inversen Funktion.

Gruß
Matthias

Bezug
                
Bezug
implizite funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:06 Mi 05.07.2006
Autor: AriR

hat man dann nur eine existenzaussage? wie kann man diese funktion denn genau finden? manchmal sind diese implizieten funktionen auch nur auf teilmengen definiert. habt ihr vielleicht eine beispielaufgabe irgendwo dazu?

danke und gruß
Ari

Bezug
                        
Bezug
implizite funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:23 Mi 05.07.2006
Autor: Hanno

Hallo.

> hat man dann nur eine existenzaussage?

Ja, es handelt sich um eine reine Existenzaussage.

> manchmal sind diese implizieten funktionen auch nur auf teilmengen definiert. habt ihr vielleicht eine beispielaufgabe irgendwo dazu?

Ja, nimm dir die Funktion [mm] $f:\IR^2\to\IR, f(x,y)=x^2+y^2-1$. [/mm] Dann ist [mm] $f^{-1}(0)$ [/mm] der Einheitskreis. Wählst du eine Nullstelle [mm] $(x_0,y_0)$ [/mm] mit [mm] $y_0\neq [/mm] 0$, dann kannst du die implizite Funktion [mm] $x^2+y^2=1$ [/mm] in einer Umgebung lokal nach $y$ auflösen; in diesem Fall ist es nicht schwierig, die Abbildung anzugeben: [mm] $\sig(y)\sqrt{1-x^2}$. [/mm]

Ist hingegen [mm] $y=0,x=\pm [/mm] 1$, dann haben wir [mm] $\partial_y f(x_0,y_0)=0$ [/mm] und der Satz kann nicht angewandt werden; das ist auch anschaulich klar, denn in jeder Umgebung von [mm] $(\pm [/mm] 1,0)$ gibt es Punkte, mit gleicher $x$ und verschiedener $y$-Koordinate auf [mm] $f^{-1}(0)$; [/mm] die Gleichung [mm] $x^2+y^2=1$ [/mm] lässt sich hier also nicht lokal nach $y$ umstellen.


Liebe Grüße,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de