www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - indirekter beweis
indirekter beweis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

indirekter beweis: Frage
Status: (Frage) beantwortet Status 
Datum: 19:50 So 19.06.2005
Autor: rotespinne

Hallo!

Ich habe die aufgabe dzu lösen:

beweisen sie indirekt : w(x)= [mm] \wurzel{x} [/mm] , x  [mm] \ge [/mm] 0 ist streng monoton wachsend.

Was wird hier von mir erwartet? Bzw. was ist ein indirekter Beweis?

        
Bezug
indirekter beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 20:14 So 19.06.2005
Autor: Karl_Pech

Hallo rotespinne,


> beweisen sie indirekt : [mm]w\left(x\right) = \wurzel{x},\;x \ge 0[/mm] ist streng monoton wachsend.

> Was wird hier von mir erwartet? Bzw. was ist ein indirekter
> Beweis?


Du mußt hier einen Widerspruchsbeweis führen. Wir nehmen an, daß [mm] $w\!$ [/mm] nicht streng monoton wachsend ist. [mm] $w\!$ [/mm] wäre dann entweder monoton fallend oder es läge keine Monotonie vor (ist z.B. bei konstanten Funktion der Fall). Jetzt betrachten wir die erste Ableitung von [mm] $w\!$: $w'\left(x\right) [/mm] = [mm] \tfrac{1}{2}\tfrac{1}{\sqrt{x}}$. [/mm] Jetzt müssen wir schauen, was für diese Ableitung gilt und betrachten die Fälle "Ableitung < 0" und "Ableitung = 0":


[m]\tfrac{1}{{2\sqrt x }} < 0 \Rightarrow 1 < 0[/m], was ein Widerspruch ist. Also kann [mm] $w\!$ [/mm] nicht monoton fallend sein. Aber vielleicht liegt gar keine Monotonie vor?


[m]\tfrac{1}{{2\sqrt x }} = 0 \Rightarrow 1 = 0[/m]; Auch das ist ein Widerspruch. Als muß [mm] $w\!$ [/mm] streng monoton steigend sein:


[m]\frac{1}{{2\sqrt x }} > 0 \Rightarrow 1 > 0 \Rightarrow 2\sqrt x > 0 \Rightarrow \sqrt x > 0 \Rightarrow x > 0[/m].



Viele Grüße
Karl



Bezug
                
Bezug
indirekter beweis: rückfrage
Status: (Frage) beantwortet Status 
Datum: 22:20 So 19.06.2005
Autor: rotespinne

Vielen dank für die schnelle antwort. aber ich habe eine frage zu dieser lösung:

in der mitte steht nun:

[mm] \bruch{1}{2 \wurzel{x}}< [/mm] 0 --> 1 < 0.

wo kommt denn die 1 her? da kann ich leider nicht so richtig folgen :( danke

Bezug
                        
Bezug
indirekter beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 22:59 So 19.06.2005
Autor: Karl_Pech

Hallo rotespinne,


> in der mitte steht nun:
>  
> [mm]\bruch{1}{2\wurzel{x}}< 0 \Rightarrow 1 < 0[/mm].
>  
> wo kommt denn die 1 her? da kann ich leider nicht so
> richtig folgen :( danke


Ich versuch's etwas ausführlicher: [m]\textstyle\frac{1}{{2\sqrt x }} < 0\stackrel{\cdot{}2\sqrt x}{\Rightarrow} \frac{{2\sqrt x }}{{2\sqrt x }} < 0\cdot{}2\sqrt x \Rightarrow 1 < 0[/m].


Nach dem Kürzen sieht man den Widerspruch, würde ich stattdessen über '>' argumentieren, so funktioniert das wie folgt:


[m]\frac{1}{{2\sqrt x }} > 0\mathop \Rightarrow \limits^{*2\sqrt x } \frac{{2\sqrt x }} {{2\sqrt x }} > 0*2\sqrt x \Rightarrow 1 > 0\mathop \Rightarrow \limits^{*2\sqrt x } 1*2\sqrt x > 0*2\sqrt x \Rightarrow 2\sqrt x > 0 \Rightarrow \cdots[/m]



Viele Grüße
Karl



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de