inhomogene Diff-Gl < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:27 Di 07.02.2012 | Autor: | zoj |
Aufgabe | Lösen Sie das folgende Anfangswertproblem:
[mm] \vektor{\dot{x_{1}}\\\dot{x_{2}}} [/mm] = [mm] \frac{1}{2}\pmat{7 & 1 \\ -1 & 5}\vektor{x_{1}\\x_{2}}+\vektor{2\\-4}, x_{1}(0)=2, x_{2}(0)=1. [/mm] |
Habe eine Frage zu der Eigenwertzerlegung von A = [mm] VJV^{-1}.
[/mm]
[mm] J=\pmat{ 3 & 1 \\ 0 & 3 }
[/mm]
Woher kommt die 1 in der oberen rechten Ecke?
Bei der Eigenwertzerleguing von homogenen DGL's standen die Eigenwerte auf der Diagonalen, die restlichen Werte waren Null.
|
|
|
|
> Lösen Sie das folgende Anfangswertproblem:
> [mm]\vektor{\dot{x_{1}}\\\dot{x_{2}}}[/mm] = [mm]\frac{1}{2}\pmat{7 & 1 \\ -1 & 5}\vektor{x_{1}\\x_{2}}+\vektor{2\\-4}, x_{1}(0)=2, x_{2}(0)=1.[/mm]
>
> Habe eine Frage zu der Eigenwertzerlegung von A =
> [mm]VJV^{-1}.[/mm]
>
> [mm]J=\pmat{ 3 & 1 \\ 0 & 3 }[/mm]
>
> Woher kommt die 1 in der oberen rechten Ecke?
> Bei der Eigenwertzerleguing von homogenen DGL's standen
> die Eigenwerte auf der Diagonalen, die restlichen Werte
> waren Null.
>
>
Stichwort Jordansche Normalform
Diese Matrix ist nicht diagonalisierbar, da 3 als einziger Eigenwert die geometrische Vielfachheit 1 hat, es gibt somit keine Basis aus Eigenvektoren.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 18:00 Di 07.02.2012 | Autor: | zoj |
Aha,
dann würde also theoretisch bei einer nicht Daigonasisierbaren Matrix mit dem doppelten Eigenwert a folgende Jordanmatrix rauskommen: [mm] \pmat{a & 1\\0 & a}
[/mm]
richtig?
V= [mm] \pmat{1&1 \\ -1 & 1} [/mm] , [mm] V^{-1} =\pmat{\frac{1}{2}&-\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}}
[/mm]
=> [mm] \pmat{1&1 \\ -1 & 1} \pmat{e^{3t}&te^{3t}\\0&e^{3t}} \pmat{\frac{1}{2}&-\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}}\vektor{x1(0)\\x2(0)}
[/mm]
Was mich bei der weiteren Rechnung aufhält, ist das [mm] te^{3t}. [/mm] Sollte da nicht [mm] e^{t} [/mm] stehen?
|
|
|
|
|
> Aha,
> dann würde also theoretisch bei einer nicht
> Daigonasisierbaren Matrix mit dem doppelten Eigenwert a
> folgende Jordanmatrix rauskommen: [mm]\pmat{a & 1\\0 & a}[/mm]
>
> richtig?
ja
>
>
> V= [mm]\pmat{1&1 \\ -1 & 1}[/mm] , [mm]V^{-1} =\pmat{\frac{1}{2}&-\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}}[/mm]
>
> => [mm]\pmat{1&1 \\ -1 & 1} \pmat{e^{3t}&te^{3t}\\0&e^{3t}} \pmat{\frac{1}{2}&-\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}}\vektor{x1(0)\\x2(0)}[/mm]
>
> Was mich bei der weiteren Rechnung aufhält, ist das
> [mm]te^{3t}.[/mm] Sollte da nicht [mm]e^{t}[/mm] stehen?
Das System [mm] \vektor{x'\\y'}=\pmat{a & 1\\0 & a}\vektor{x\\y} [/mm] hat Lösungen der Form
[mm] \vektor{x\\y}=\vektor{t*e^{at}\\e^{at}} [/mm] und [mm] \vektor{x\\y}=\vektor{e^{at}\\0}
[/mm]
(und Linearkombinationen davon), was man durch einsetzen nachprüfen kann.
Dies ist ein Sonderfall der allgemeinen Lösung eines linearen Differentialgleichungssystems, wenn die Koeffizientenmatrix nicht diagonalisierbar ist.
>
>
|
|
|
|