www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - inhomogene lineare Different.
inhomogene lineare Different. < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

inhomogene lineare Different.: Korrektur
Status: (Frage) beantwortet Status 
Datum: 22:50 Sa 17.07.2010
Autor: capablanca

Aufgabe
Bestimmen Sie die allgemeinen Lösungen y(x) der folgenden Differentialgleichungen:

[mm] y'-y/x=2x^2 [/mm]

Hallo, ich kann die Aufgabe leider nicht komplett lösen und würde mich über Tipps freuen.

Mein Ansatz:

Zunaechst die zugehoerige homogene Differentialgleichung durch Trennung der Variablen lösen:

[mm] \bruch{dy}{dx} [/mm] - [mm] \bruch{y}{x} [/mm] = 0
->
[mm] \bruch{dy}{dx}=\bruch{y}{x} [/mm]
->
[mm] \bruch{dy}{y}=\bruch{dx}{x} [/mm]
->
[mm] \integral\bruch{dy}{y}=\integral\bruch{dx}{x} [/mm]
->
ln|y|=ln|x|+ln|K|

Die allgemeine Loesung der homogenen Gleichung lautet somit nach Entlogarithmierung:

[mm] y_0=x+K [/mm]

Die inhomogene Differentialgleichung wird durch Variation der Konstanten gelöst:
(K->K(x))
->
y=x+K(x)
->
y'=1+K'(x)

in die inhomogene Differentialgleichung einsetzen:
[mm] 1+K'(x)=2x^2 [/mm]

Ab hier folgt die unbestimmte Integration.


Ist alles soweit richtig?


gruß capablanca




        
Bezug
inhomogene lineare Different.: Antwort
Status: (Antwort) fertig Status 
Datum: 23:12 Sa 17.07.2010
Autor: schachuzipus

Hallo Alex,

> Bestimmen Sie die allgemeinen Lösungen y(x) der folgenden
> Differentialgleichungen:
>  
> [mm]y'-y/x=2x^2[/mm]
>  Hallo, ich kann die Aufgabe leider nicht komplett lösen
> und würde mich über Tipps freuen.
>  
> Mein Ansatz:
>  
> Zunaechst die zugehoerige homogene Differentialgleichung
> durch Trennung der Variablen lösen: [ok]
>  
> [mm]\bruch{dy}{dx}[/mm] - [mm]\bruch{y}{x}[/mm] = 0
>  ->
>  [mm]\bruch{dy}{dx}=\bruch{y}{x}[/mm]
>  ->
>  [mm]\bruch{dy}{y}=\bruch{dx}{x}[/mm]
>  ->
>  [mm]\integral\bruch{dy}{y}=\integral\bruch{dx}{x}[/mm] [ok]
>  ->
>  ln|y|=ln|x|+ln|K|

Hmm, wieso nennst du die Integrationskonstante [mm] $\ln|K|$ [/mm] und nicht $c$ ?




>  
> Die allgemeine Loesung der homogenen Gleichung lautet somit
> nach Entlogarithmierung:
>  
> [mm]y_0=x+K[/mm] [notok]

[mm] $e^{a+b}=e^{a}\cdot{}e^b$ [/mm] !!

Also mit [mm] $\ln(y)=ln(x)+c$ [/mm] dann [mm] $y=e^{\ln(x)+c}=e^{\ln(x)}\cdot{}\underbrace{e^c}_{:=K}=K\cdot{}x$ [/mm]

Damit dann nochmal Variation der Konstanten.

Es ergibt sich eine recht simple Lösung!

>  
> Die inhomogene Differentialgleichung wird durch Variation
> der Konstanten gelöst:
>  (K->K(x))
>  ->
>  y=x+K(x)
>  ->
>  y'=1+K'(x)
>  
> in die inhomogene Differentialgleichung einsetzen:
>  [mm]1+K'(x)=2x^2[/mm]
>  
> Ab hier folgt die unbestimmte Integration.
>  
>
> Ist alles soweit richtig?
>  
>
> gruß capablanca
>  


Gruß

schachuzipus


Bezug
                
Bezug
inhomogene lineare Different.: Lösung
Status: (Frage) beantwortet Status 
Datum: 20:11 Mo 19.07.2010
Autor: capablanca

Danke für den Hinweis, also die Lösung:

y=K*x

Die inhomogene Differentialgleichung wird durch Variation der Konstanten gelöst.
->
y=K(x)*x
->
mit Produktregel:
y'=K(x)*1+K'(x)*x

Alles in die homogene Gleichung einsetzen y'-y/x=0:
->

[mm] \underbrace{K(x)+K'(x)*x}_{=y'}-\underbrace{K(x)*x}_{=y}/x [/mm]
->
[mm] K'(x)*x=2x^2 [/mm]
->
K'(x)=2x
->
[mm] K(x)=\integral2x*dx [/mm]
->
[mm] K(x)=x^2+C [/mm]
->
Jetzt die Lösung von K(x) [mm] also"x^2+C" [/mm] noch mal in die Gleichung "y=K(x)*x" für K(x) einsetzen:
->
[mm] y=(x^2+C)*x [/mm]


Lösung:
->
[mm] y=x^3+Cx [/mm]

ist die Lösung korrekt?

gruß


Bezug
                        
Bezug
inhomogene lineare Different.: Antwort
Status: (Antwort) fertig Status 
Datum: 22:05 Mo 19.07.2010
Autor: Herby

Hallo Capablanca,

dein Ergebnis stimmt [daumenhoch]


LG
Herby



Bezug
                                
Bezug
inhomogene lineare Different.: danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:15 Mo 19.07.2010
Autor: capablanca

Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de