www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - inhomogenes / homogenes LGS
inhomogenes / homogenes LGS < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

inhomogenes / homogenes LGS: Frage
Status: (Frage) beantwortet Status 
Datum: 14:59 Mi 30.03.2005
Autor: m0rph3us

Hi,
ich soll untersuchen für welchen Wert (t) ein LGS keine, eine bzw. unendlich viele Lösungen hat.
Mein Problem liegt darin, dass ich nicht mit rg(A) < n oder rg(A) = n  klarkomme.

ich habe folgendes LGS

[mm] \pmat{ 2 & 3 & 4 | t-1 \\ 0 & 1 & t | 2 \\ 0 & 0 & (t+3)(t+1) | -t-1} [/mm]
(soll die Matrixdarstellung sein.   | soll ein Trennstrich sein, konnte es leider nicht besser darstellen)

Ich hab herausgefunden das für t = -3 das LGS unlösbar ist, da dann Rg(A) [mm] \not=Rg(B) [/mm]

Laut Lösung soll es bei t=-1 unendlich viele Lösungen geben.
1. Rg(A) = Rg(A|b)   trifft zu, also lösbar
2. Rg(A) < n            ... hier hänge ich. Wie bestimme ich die Anzahl der Variablen? ... Ich dachte die Anzahl der Variablen ist 1 (t = eine Variable).
Dürfte hier aber nicht zutreffen da  Rg(A)=2 u. daher die Anzahl der Variablen größer als 2 sein müssten.

Ich wäre dankbar wenn mir einer sagen könnte wie ich die Anzahl der Variablen bestimmen kann. Habe hier anscheinend einen Denkfehler.

MfG


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
inhomogenes / homogenes LGS: Antwort
Status: (Antwort) fertig Status 
Datum: 15:15 Mi 30.03.2005
Autor: Julius

Hallo m0rph3us!

>  ich soll untersuchen für welchen Wert (t) ein LGS keine,
> eine bzw. unendlich viele Lösungen hat.
>  Mein Problem liegt darin, dass ich nicht mit rg(A) < n
> oder rg(A) = n  klarkomme.
>  
> ich habe folgendes LGS
>  
> [mm]\pmat{ 2 & 3 & 4 | t-1 \\ 0 & 1 & t | 2 \\ 0 & 0 & (t+3)(t+1) | -t-1}[/mm]
> (soll die Matrixdarstellung sein.   | soll ein Trennstrich
> sein, konnte es leider nicht besser darstellen)
>
> Ich hab herausgefunden das für t = -3 das LGS unlösbar ist,
> da dann Rg(A) [mm]\not=Rg(B)[/mm]

[ok]

> Laut Lösung soll es bei t=-1 unendlich viele Lösungen
> geben.

[ok]

>  1. Rg(A) = Rg(A|b)   trifft zu, also lösbar

[ok]

>  2. Rg(A) < n            ... hier hänge ich. Wie bestimme
> ich die Anzahl der Variablen? ... Ich dachte die Anzahl der
> Variablen ist 1 (t = eine Variable).

Also: Wir haben $n=3$.

Der Rang einer Matrix in Diagonalgestalt (wie hier) ist die Anzahl aller Zeilen minus die Anzahl der Nullzeilen. Wir haben hier für $t=-1$ eine Nullzeile (die Einträge der letzten Zeile verschwinden ja alle, wenn man $t=-1$ einsetzt). Daher ist

$Rg(A) = 3-1=2<3=n$.

Jetzt klar? :-)

Viele Grüße
Julius


Bezug
                
Bezug
inhomogenes / homogenes LGS: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:22 Mi 30.03.2005
Autor: m0rph3us


>  
> Also: Wir haben [mm]n=3[/mm].
>  
> Der Rang einer Matrix in Diagonalgestalt (wie hier) ist die
> Anzahl aller Zeilen minus die Anzahl der Nullzeilen. Wir
> haben hier für [mm]t=-1[/mm] eine Nullzeile (die Einträge der
> letzten Zeile verschwinden ja alle, wenn man [mm]t=-1[/mm]
> einsetzt). Daher ist
>  
> [mm]Rg(A) = 3-1=2<3=n[/mm].

das mit dem Rang ist mir klar.
Aber warum ist  n=3 . Ich dachte n steht für eine Variable (in diesem Bsp. wäre das t, da es sonst keine andere Variable gibt n = 1).


Bezug
                        
Bezug
inhomogenes / homogenes LGS: Hinweis
Status: (Antwort) fertig Status 
Datum: 15:28 Mi 30.03.2005
Autor: MathePower

Hallo,

n ist 3 ,weil da eben 3 Zeilen vorhanden sind. Außerdem sind ja auch 3 Parameter zu bestimmen.

Gruß
MathePower





Bezug
                                
Bezug
inhomogenes / homogenes LGS: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:36 Mi 30.03.2005
Autor: m0rph3us

Hi,
Danke, ich hab n immer als eine Variable z.B. x, t, y usw. angesehen.
Jetzt ist es mir logisch wie ich ein LGS auf lösbarkeit hin untersuchen kann.

Nochmals vielen Danke an alle.

MfG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de