www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Naive Mengenlehre" - injektiv, surjektiv, bijektiv
injektiv, surjektiv, bijektiv < naiv < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Naive Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

injektiv, surjektiv, bijektiv: Wie überprüfe ich Funktionen
Status: (Frage) beantwortet Status 
Datum: 10:13 Do 06.11.2014
Autor: mathswho

Aufgabe
f : [-1,1] [mm] \to [/mm] [0,1], x [mm] \mapsto x^2 [/mm]

Wie überprüfe ich bei der gegebenen Funktion, ob sie injektiv, surjektiv oder bijektiv ist? Blicke da leider nicht mehr weiter. Hoffe ihr könnt mir helfen.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
injektiv, surjektiv, bijektiv: Antwort
Status: (Antwort) fertig Status 
Datum: 10:21 Do 06.11.2014
Autor: fred97


> f : [-1,1] [mm]\to[/mm] [0,1], x [mm]\mapsto x^2[/mm]
>  Wie überprüfe ich
> bei der gegebenen Funktion, ob sie injektiv, surjektiv oder
> bijektiv ist? Blicke da leider nicht mehr weiter. Hoffe ihr
> könnt mir helfen.

Injektivität: folgt aus s,t [mm] \in [/mm] [-1,1] und f(t)=f(s) stets auch t=s ? Wenn ja, so ist f injektiv. Wenn nein, so ist f nicht injektiv.

Surjektivität: gibt es zu jedem y [mm] \in [/mm] [0,1] ein x [mm] \in [/mm] [-1,1] ? Wenn ja, so ist f surjektiv. Wenn nein, so ist f nicht surjektiv.

Bijektiv = injektiv und surjektiv.

FRED

>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
injektiv, surjektiv, bijektiv: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:37 Do 06.11.2014
Autor: mathswho

Kannst du vielleicht mal den Lösungsweg angeben, also wie man sowas halt "mathematisch" beweisen tut.

Bezug
                        
Bezug
injektiv, surjektiv, bijektiv: Antwort
Status: (Antwort) fertig Status 
Datum: 11:08 Do 06.11.2014
Autor: chrisno

Erst mal bist Du dran. Ist die Funktion injektiv oder surjektiv? Was vermutest Du und warum?

Bezug
                                
Bezug
injektiv, surjektiv, bijektiv: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:21 Do 06.11.2014
Autor: mathswho

Die Sache ist, ich verstehe nicht wie man das dann überprüft? Welche Gleichungen ich dann bilden muss.

Bezug
                                        
Bezug
injektiv, surjektiv, bijektiv: Antwort
Status: (Antwort) fertig Status 
Datum: 11:42 Do 06.11.2014
Autor: chrisno

Du sollst es noch nicht überprüfen. Du musst erst einmal schreiben:
"Ich vermute dass die Funktion injektiv ist, weil .... "(Hier steht etwas mit den Worten jedes, Wertemenge, abgebildet, Element)
"Ich vermute dass die Funktion surjektiv ist, weil ...." (Hier steht etwas mit den Worten jedes, Wertemenge, angenommen, Element)
Das kannst Du noch jeweils mit einem Beispiel, sprich konkreten Zahlen, garnieren.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Naive Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de