www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Diskrete Mathematik" - injektive Abbildungen
injektive Abbildungen < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

injektive Abbildungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:40 So 07.11.2010
Autor: taiBsu

Aufgabe
Gegeben sind die Mengen A = {1,2} und B = {3,4,5,6}.
(a) Bestimmen Sie die Anzahl aller injektiven Abbildungen f [mm] \in B^A [/mm] und geben Sie ein Beispiel einer solchen Abbildung an.


Hallo,
also mein Problem ist, dass ich noch relativ neu in dem Bereich Hochschulmathematik bin (Medieninformatik 1. Semester).
Ich habe jetzt für jedes [mm] B^A [/mm] ein Ergebnis errechnet:
[mm] 3^1 [/mm] = 3, [mm] 3^2 [/mm] = 9, [mm] 4^1 [/mm] = 4, [mm] 4^2 [/mm] = 16, [mm] 5^1 [/mm] = 5, [mm] 5^2 [/mm] = 25, [mm] 6^1 [/mm] = 6, [mm] 6^2 [/mm] = 36.
Demnach müsste die Anzahl aller injektiven Abbildungen 8 betragen, nur dass sie dann nicht wirklich injektiv, sondern doch bijektiv wären oder? Es gibt ja nur genau diese 8 Ergebnisse, die abgebildet werden können?!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Danke im Voraus!

        
Bezug
injektive Abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:59 So 07.11.2010
Autor: Sax

Hi,

hier liegt ein Missverständnis bezüglich des Symbols [mm] B^{A} [/mm] vor.

Mit [mm] B^{A} [/mm] ist keine Zahl gemeint, sondern die Menge aller Abbildungen von A nach B. Die Schreibweise hat sich deshalb eingebürgert, weil die Anzahl aller solchen Abbildungen durch die Anzahl der Elemente von A (geschrieben :  |A|) bzw. von B bestimmt werden kann :  Es gibt  [mm] |B|^{|A|} [/mm]  solcher Abbildungen.

In deinem Fall gibt es also [mm] 4^2=16 [/mm] Abbildungen.
Drei davon sind  
f :  f(1) = 3 ,  f(2) = 4
g :  g(1) = 4 ,  g(2) = 3
h :  h(1) = 5 ,  h(2) = 5

Jetzt überlege, wieviele von den 16 injektiv sind.
(Wenn du möchtest, kannst du versuchen, eine allgemeine Formel mit |A| und |B| für die gesuchte Anzahl zu finden.)

Gruß Sax.


Bezug
                
Bezug
injektive Abbildungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:14 Mo 08.11.2010
Autor: taiBsu

Aufgabe
<br>

<br>

Ok, das habe ich soweit verstanden. Verstehe jetzt nur nicht, wie ich weiter vorgehen soll. Wenn ich die Möglichkeiten aller Abbildungen aufzeichne, komme ich trotzdem nur auf 8?!

Bezug
                        
Bezug
injektive Abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:23 Mo 08.11.2010
Autor: felixf

Moin!

> Ok, das habe ich soweit verstanden. Verstehe jetzt nur
> nicht, wie ich weiter vorgehen soll. Wenn ich die
> Möglichkeiten aller Abbildungen aufzeichne, komme ich
> trotzdem nur auf 8?!

Warum schreibst du nicht deine 8 hier auf und begruendest, warum es keine weitere mehr gibt? Dann koennen wir dir sagen, wo du einen Fehler gemacht hast...

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de