www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Thermodynamik" - innere Energie und Enthalpie
innere Energie und Enthalpie < Thermodynamik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Thermodynamik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

innere Energie und Enthalpie: Ausdruck mit cp/cv
Status: (Frage) beantwortet Status 
Datum: 19:13 Do 12.08.2010
Autor: Adamantin

Hallöchen allerseits, ich wiederhole gerade PC 1 und ein Zusammenhang wird mir einfach nicht klar, vielleicht könnt ihr mir helfen.

Es geht um den 1. Hauptsatz und den Zusammenhang von U mit der Wärmekapazität sowie H mit der Wärmekapazität. So ich schreibe erstmal die Formeln ab, die wir brauchen:

$ [mm] (dq)_v=c_vdT [/mm] $
$ [mm] (dq)_p=c_pdT [/mm] $

So das folgt ja unmittelbar aus dem ersten Hauptsatz, weil z.B.

$ [mm] \Delta [/mm] U= q + w [mm] \gdw \Delta [/mm] U - w= q [mm] \gdw \Delta [/mm] U -pdV $

Wenn wir uns isochor bewegen, gibt es kein -pdV und q ist nur von U abhängig

Dann kann man aufstellen:

$ dU = [mm] (\bruch{\partial U}{\partial T})_V*dT+(\bruch{\partial U}{\partial V})_T*dV [/mm] $

Und hier sieht man dann, dass im isochoren nur $ dU = [mm] (\bruch{\partial U}{\partial T})_V*dT [/mm] $ übrigbleibt und die partielle Ableitung ist per Definition [mm] c_v [/mm]

Das gleiche lässt sich für die Enthalpie machen.

Meine Frage bezieht sich jetzt jedoch genau diese zwei Gleichungen:

$ 1. [mm] (dU)_V [/mm] = [mm] n*c_v*dT [/mm] $
$ 2. [mm] (dH)_p [/mm] = [mm] n*c_p*dT [/mm] $

Also einmal habe ich Gleichungen für die Wärme q, je nach dem, ob ich einen isochoren oder isobaren Prozess habe und kann damit q ausrechnen, das sind die ersten Gleichungen oben. Zum zweiten habe ich Gleichungen, die offenbar IMMER U und H ausrechnen. Also esg eht mir konkret um die Aufgaben aus den Übungen und wir haben IMMER die Innere Energie U bei idealen Gasen mit der Gleichung 1, also mit cv berechnet, obwohl die HERLEITUNG ja von einem isochoren Prozess ausgeht, sonst hätte ich im totalen Differential dU ja auch noch den Part mit dV drin. Also meiner Meinung nach dürfte man


$ 1. [mm] (dU)_V [/mm] = [mm] n*c_v*dT [/mm] $

doch nur benutzen, wenn eben der Prozess oder Teilschritt isochor ist, also keine Änderung von V auftritt. Aber in allen Aufgaben wird ständig U in allen Prozessen mit dieser Formel berechnet, auch wenn V sich ändert. Bei q wird es dann so gemacht, wie ich es verstehe: Entweder man nutzt cp oder cv, je nach dem, ob isochor oder isobar und wenn sich sowohl p als auch V ändern...berechnet man U mit cv, obwohl V sich ändert, berechnet w und drückt dann q durch U-w aus. Das verstehe ich einfach nicht, selbes Problem bei der Enthalpie. Die wird hier mit cpdT berechnet, obwohl sich p ändert und in der Herleitung der Gleichung 2. isobar vorausgesetzt wird...

        
Bezug
innere Energie und Enthalpie: Antwort
Status: (Antwort) fertig Status 
Datum: 00:14 Fr 13.08.2010
Autor: leduart

Hallo
[mm] c_v [/mm] heisst doch bei konstantem Volumen, und wenn V konstant ist was ist dann dV?
gruss leduart

Bezug
                
Bezug
innere Energie und Enthalpie: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 01:51 Fr 13.08.2010
Autor: Adamantin

Das war nicht die Frage, dV ist natürlich 0 es ging um das Problem, dass man U mit cv berechnet, obwohl V NICHT konstant ist!

Ich habe selbst die Lösung gefunden, sofern sie stimmt ,weil wir das Problem bei der Entropie hatten, die rein rechnerisch bei einer Expansion im Vakuum 0 wäre, aber nicht ist, weil man einen anderen Prozess sich ausdenken kann, und warum? Weil S, genauso wie U, eine ZUSTANDSFUNKTION ist. Und das ist wohl der springende Punkt, wie mir eben im Bett bewusst wurde.

q ist KEINE Zustandsfunktion, daher kann ich q niemals mit cvdT berechnen, wenn V NICHT konstant ist. U kann ich dagegen WOHL mit c_vdT berechnen, AUCH wenn V NICHT konstant ist, weil ich mir einen gleichwertigen isochoren Prozess ausdenken kann.

Bezug
                        
Bezug
innere Energie und Enthalpie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:12 Fr 13.08.2010
Autor: ONeill

Hallo Adamantin!

Aus PC I weiß ich noch, dass man so rechnen darf und dass es dafür auch eine Begründung gibt. Ich schau heute Nachmittag mal in meinen Unterlagen nach, sollte ich die Begründung finden, dann poste ich sie hier.

Gruß Christian

Bezug
                        
Bezug
innere Energie und Enthalpie: Antwort auf die Frage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:22 Sa 14.08.2010
Autor: Adamantin

Habe endlich selbst die Lösung gefunden und könnte mich doppelt in den Hintern beißen. Einerseits ist die Antwort, die ich schon gegeben habe, natürlich richtig mit der Zustandsfunktion, ABER vor allem betrachten wir ja immer bei einfachen Aufgaben ideale Gase und jetzt schaue man sich das totale Differenzial an:

$ [mm] dU=(\bruch{\partial U}{\partial T})_V [/mm] dT + [mm] (\bruch{\partial U}{\partial V})_T [/mm] dV $

Nun kann man zeigen, dass die partielle Ableitung [mm] (\bruch{\partial U}{\partial V})_T [/mm] dem inneren Druck [mm] \Pi [/mm] entspricht und bei idealen Gasen 0 ist. Damit fällt der zweite Term weg, der auch wegfiele, wenn wir im isochoren unterwegs sind, nur dass er eben IMMER wegfällt für ideale Gase. Damit ist dann klar, warum [mm] \Delta [/mm] U=c_vdT sein muss

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Thermodynamik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de