innere Punkte und Stetigkeit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:23 Sa 11.06.2011 | Autor: | Klempner |
Aufgabe | a) Ist die Funktion
g : [mm] \IR^{2} \to \IR
[/mm]
[mm] (x,y)\mapsto\begin{cases} \bruch{x^{2}y^{3}}{x^{2} + y^{3}}, & \mbox{falls } (x,y) \mbox{ ungleich (0,0)} \\ 0, & \mbox{falls } (x,y) \mbox{ =(0,0)} \end{cases}
[/mm]
stetig? |
Hallo,
Ich habe anhand eines Buches angefangen auf Stetigkeit zu prüfen.
Dazu habe ich folgendes gerechnet:
1.Schritt: Längs der x-Achse (y=0)
f(x,0)= [mm] \bruch{x^{2}*0}{x^{2}+0}=0 [/mm] (für x [mm] \not=0)
[/mm]
[mm] \limes_{x\rightarrow\ 0 } [/mm] f(x,0) = [mm] \limes_{x\rightarrow\ 0 }0 [/mm] =0
2.Schritt: Längs der Winkelhalbierenden x=y
f(x,x) = [mm] \bruch{x^{2}*x^{3}}{x^{2}+x^{3}}=\bruch{x^{5}}{x^{2}+x^{3}}
[/mm]
Und hier liegt jetzt mein Problem, da ich den Bruch nicht weiter auflösen kann. In dem Beispiel war dies möglich und da dabei unterschiedliche Grenzwerte herauskamen, war die Funktion nicht stetig. Aber wie kann ich das hier zeigen?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:50 Sa 11.06.2011 | Autor: | Marcel |
Hallo,
> a) Ist die Funktion
> g : [mm]\IR^{2} \to \IR[/mm]
>
> [mm](x,y)\mapsto\begin{cases} \bruch{x^{2}y^{3}}{x^{2} + y^{3}}, & \mbox{falls } (x,y) \mbox{ ungleich (0,0)} \\ 0, & \mbox{falls } (x,y) \mbox{ =(0,0)} \end{cases}[/mm]
>
> stetig?
aus [mm] $\|(x_n,y_n)\|_2 \to [/mm] 0$ folgt doch, wenn wir nur die "interessanten [mm] $(x_n,y_n)$ [/mm] mit [mm] $(x_n,y_n) \not=(0,0)$ [/mm] betrachten", dass gilt
[mm] $$f(x_n,y_n)=\frac{x_n^2y_n^3}{x_n^2+y_n^3} \le \text{max}\left\{y_n^3,x_n^2\right\}\,.$$
[/mm]
EDIT: Dies gilt jedenfalls, wenn alle [mm] $y_n$ [/mm] auch [mm] $\ge [/mm] 0$ sind. Das bedeutet nun: Wenn etwas schiefgeht mit der Stetigkeit in [mm] $(0,0)\,,$ [/mm] dann muss man dafür [mm] $y_n \to [/mm] 0$ mit [mm] $y_n [/mm] < 0$ betrachten!
P.S.:
Beachte:
Falls [mm] $x_n \not=0$ [/mm] und [mm] $y_n \blue{\ge} 0\,,$ [/mm] so gilt sowohl
[mm] $$f(x_n,y_n)=\frac{x_n^2y_n^3}{x_n^2+y_n^3} \le \frac{x_n^2y_n^3}{x_n^2}=y_n^3$$
[/mm]
als auch
[mm] $$f(x_n,y_n)=\frac{x_n^2y_n^3}{x_n^2+y_n^3} \le \frac{x_n^2y_n^3}{y_n^3}=x_n^2\,.$$
[/mm]
Beachte auch:
1.) [mm] $\|(x_n,y_n)\|_2 \to [/mm] 0$ (bzw. [mm] $(x_n,y_n) \to [/mm] (0,0)$ in [mm] $\IR^2$ [/mm] mit euklidischer Norm bzw. Metrik) gilt genau dann, wenn die Komponentenfolgen [mm] $x_n \to [/mm] 0$ und [mm] $y_n \to [/mm] 0$ erfüllen. Insbesondere folgt aus [mm] $\|(x_n,y_n)\|_2 \to [/mm] 0$ dann [mm] $x_n \to [/mm] 0$ UND [mm] $y_n \to 0\,.$ [/mm]
2.) [mm] $x_n \to [/mm] 0$ liefert auch [mm] $x_n^2 \to 0^2=0\,,$ [/mm] und analog folgt aus [mm] $y_n \to [/mm] 0$ dann [mm] $y_n^3 \to 0\,.$
[/mm]
3.) Ist [mm] $x_n \not=0$ [/mm] und [mm] $y_n=0\,,$ [/mm] so gilt
[mm] $$f(x_n,y_n)=f(x_n,0)=\frac{x_n^2*0}{x_n^2+0}=0\,,$$
[/mm]
und ist [mm] $y_n \not=0$ [/mm] und [mm] $x_n=0\,,$ [/mm] so erkennst Du analog
[mm] $$f(x_n,y_n)=f(0,x_n)=0\,.$$
[/mm]
Gruß,
Marcel
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:34 So 12.06.2011 | Autor: | Marcel |
Hallo,
wie eben (nach einigem hin und her meinerseits - sorry) gesehen, könnte schlimmstenfalls etwas bei [mm] $y_n [/mm] < 0$ mit [mm] $y_n \to [/mm] 0$ schiefegehen. Das tut's leider auch, allerdings schon in der Definition der Funktion:
Denn für etwa [mm] $x_n=1/n$ [/mm] und [mm] $y_n:=-\frac{1}{\sqrt[3]{n^2}}$ [/mm] ist der Nenner der obigen Funktion gerade
[mm] $$=\frac{1}{n^2}+\frac{-1}{\sqrt[3]{n^2}^3}=\frac{1}{n^2}-\frac{1}{n^2}=0\,.$$
[/mm]
Die Funktion ist also nicht auf ganz [mm] $\IR^2$ [/mm] definiert (insbesondere gibt es in jeder noch so kleinen Umgebung von $(0,0) [mm] \in \IR^2$ [/mm] Stellen, wo die Funktion nicht definiert ist!).
P.S.:
Abändern der Funktion zu
[mm] $$f(x_n,y_n)=x_n^2y_n^3/(x_n^2+|y_n|^3)$$
[/mm]
würde diese Problematik beheben. Analog zu meiner ersten Antwort bekäme man dann leicht durch Abschätzen von [mm] $|f(x_n,y_n)|$ [/mm] sofort die Stetigkeit von [mm] $f\,$ [/mm] in [mm] $(0,0)\,$ [/mm] heraus. Aber da sollte man erstmal nochmal kurz den Aufgabensteller auf die Problematik aufmerksam machen, dass die Funktion in dem oben gestellten Sinne nicht überall definiert ist!
Gruß,
Marcel
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 00:50 So 12.06.2011 | Autor: | Marcel |
Hallo,
> a) Ist die Funktion
> g : [mm]\IR^{2} \to \IR[/mm]
>
> [mm](x,y)\mapsto\begin{cases} \bruch{x^{2}y^{3}}{x^{2} + y^{3}}, & \mbox{falls } (x,y) \mbox{ ungleich (0,0)} \\ 0, & \mbox{falls } (x,y) \mbox{ =(0,0)} \end{cases}[/mm]
>
> stetig?
> Hallo,
> Ich habe anhand eines Buches angefangen auf Stetigkeit zu
> prüfen.
>
> Dazu habe ich folgendes gerechnet:
>
> 1.Schritt: Längs der x-Achse (y=0)
>
> f(x,0)= [mm]\bruch{x^{2}*0}{x^{2}+0}=0[/mm] (für x [mm]\not=0)[/mm]
>
> [mm]\limes_{x\rightarrow\ 0 }[/mm] f(x,0) = [mm]\limes_{x\rightarrow\ 0 }0[/mm]
> =0
>
> 2.Schritt: Längs der Winkelhalbierenden x=y
>
> f(x,x) =
> [mm]\bruch{x^{2}*x^{3}}{x^{2}+x^{3}}=\bruch{x^{5}}{x^{2}+x^{3}}[/mm]
>
> Und hier liegt jetzt mein Problem, da ich den Bruch nicht
> weiter auflösen kann. In dem Beispiel war dies möglich
> und da dabei unterschiedliche Grenzwerte herauskamen, war
> die Funktion nicht stetig. Aber wie kann ich das hier
> zeigen?
es reicht übrigens nicht, "nur auf Geraden zur $(0,0)$ zu laufen"; sofern man Stetigkeit nachzuweisen hat. Man muss dann zeigen, dass die Funktionswerte einer jeden gegen $(0,0)$ laufenden Kurve auch gegen $f(0,0)$ streben. Aber zu Deiner Frage oben:
Dort könnte man einfach sagen, dass gilt ($x [mm] \not=-1$)
[/mm]
[mm] $$f(x,x)=x^5/(x^2+x^3)=\frac{1}{1/x^3+x/x^3}=\frac{x^3}{x+1}\,.$$
[/mm]
Für $x [mm] \to [/mm] 0$ wird sicher irgendwann $-1/2 [mm] \le [/mm] x [mm] \le [/mm] 1/2$ sein, so dass aus obigem folgt
[mm] $$|f(x,x)|=|x^3|/(x+1) \le |x^3|/(1/2)=2|x^3|\,.$$
[/mm]
Also $f(x,x) [mm] \to 0\,.$
[/mm]
Gruß,
Marcel
|
|
|
|