www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - integral/ableitung
integral/ableitung < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

integral/ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:33 So 01.02.2015
Autor: mimo1

Aufgabe
Zeige, dass für t>0 gilt

[mm] \integral_\IR{x^2e^{-tx^2}dx}=-\bruch{d}{dt}\integral_\IR{e^{-tx^2}dx} [/mm]

Benutze dies zur Berechnung von [mm] \integral_\IR{x^2e^{-x^2}dx}, [/mm] wobei [mm] \integral_\IR{e^{-tx^2}dx}=\wurzel{\pi} [/mm]

hallo

also ich bin folgend herangegangen, indem ich es von hinten gezeigt habe d.h. ich muss zeigen dass ich die ableitung in das Integral ziehen kann, oder?

[mm] -\bruch{d}{dt}\integral_\IR{e^{-tx^2}dx}=\bruch{d}{dt}\integral_\IR{-e^{-tx^2}dx}=\limes_{h\rightarrow 0}\bruch{1}{h}(\integral_\IR{-e^{-(t+h)x^2}dx}-\integral_\IR{-e^{-tx^2}dx})=\limes_{h\rightarrow 0}(\integral_\IR{\bruch{e^{-tx^2}-e^{-(t+h)x^2}}{h}dx}) [/mm]

wir hatten eine mal eine ähnlich aufgaben bei dem wir vom Integral

[mm] \integral{e^{tx}\bruch{sinx}{x}dx} [/mm]        
die Ableitung bestimmen.
ich habe mich daran orieniertiert.

aber dann steht in der Lösung [mm] \limes_{h\rightarrow0}(\bruch{e^{-(t+h)x}-e^{-tx}}{h})=e^{-tx}=-xe^{-tx} [/mm]

in meinem fall würde es gegen [mm] e^{-tx^2} [/mm] konvergieren für h gegen 0.

meine frage jetzt:warum ist es so? ich hätte gesagt dass es gegen 0 konvergiert.

ich bin für jede hilfe dankbar und hoffe ihr könnt mir bei der Aufgabe weiterhelfen.



        
Bezug
integral/ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:45 So 01.02.2015
Autor: MathePower

Hallo mimo1,

> Zeige, dass für t>0 gilt
>  
> [mm]\integral_\IR{x^2e^{-tx^2}dx}=-\bruch{d}{dt}\integral_\IR{e^{-tx^2}dx}[/mm]
>  
> Benutze dies zur Berechnung von
> [mm]\integral_\IR{x^2e^{-x^2}dx},[/mm] wobei
> [mm]\integral_\IR{e^{-tx^2}dx}=\wurzel{\pi}[/mm]
>  hallo
>  
> also ich bin folgend herangegangen, indem ich es von hinten
> gezeigt habe d.h. ich muss zeigen dass ich die ableitung in
> das Integral ziehen kann, oder?
>  
> [mm]-\bruch{d}{dt}\integral_\IR{e^{-tx^2}dx}=\bruch{d}{dt}\integral_\IR{-e^{-tx^2}dx}=\limes_{h\rightarrow 0}\bruch{1}{h}(\integral_\IR{-e^{-(t+h)x^2}dx}-\integral_\IR{-e^{-tx^2}dx})=\limes_{h\rightarrow 0}(\integral_\IR{\bruch{e^{-tx^2}-e^{-(t+h)x^2}}{h}dx})[/mm]
>  
> wir hatten eine mal eine ähnlich aufgaben bei dem wir vom
> Integral
>  
> [mm]\integral{e^{tx}\bruch{sinx}{x}dx}[/mm]        
> die Ableitung bestimmen.
> ich habe mich daran orieniertiert.
>  
> aber dann steht in der Lösung
> [mm]\limes_{h\rightarrow0}(\bruch{e^{-(t+h)x}-e^{-tx}}{h})=e^{-tx}=-xe^{-tx}[/mm]
>  
> in meinem fall würde es gegen [mm]e^{-tx^2}[/mm] konvergieren für
> h gegen 0.
>  
> meine frage jetzt:warum ist es so? ich hätte gesagt dass
> es gegen 0 konvergiert.
>


Betrachte Zähler und Nenner des Ausdruckes:

[mm]\bruch{e^{-tx^2}-e^{-(t+h)x^2}}{h}[/mm]

Zähler und Nenner gehem hier für h gegen 0 ebenfalls gegen 0.
Somit liegt hier ein unbestimmter Ausdruck der Form "[mm]\bruch{0}{0}[/mm]" vor.
Das  ist somit ein Fall für L'hospital.


> ich bin für jede hilfe dankbar und hoffe ihr könnt mir
> bei der Aufgabe weiterhelfen.
>  


Gruss
MathePower

Bezug
                
Bezug
integral/ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:47 So 01.02.2015
Autor: mimo1

dankeschön, darauf müsste ich eigenlich auch selber kommen :)

Bezug
        
Bezug
integral/ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 07:45 Mo 02.02.2015
Autor: fred97

  
> aber dann steht in der Lösung
> [mm]\limes_{h\rightarrow0}(\bruch{e^{-(t+h)x}-e^{-tx}}{h})=e^{-tx}=-xe^{-tx}[/mm]

Das erste "=" ist falsch !

Die Sache mit l'Hospital zu bearbeiten , halte ich für überzogen.

Sei x fest und setze [mm] f(t):=e^{-tx} [/mm]

Dann gilt

     [mm] $\bruch{e^{-(t+h)x}-e^{-tx}}{h}=\bruch{f(t+h)-f(t)}{h} \to f'(t)=-xe^{-tx}$ [/mm]  für $h [mm] \to [/mm] 0$.

FRED

>  
> in meinem fall würde es gegen [mm]e^{-tx^2}[/mm] konvergieren für
> h gegen 0.
>  
> meine frage jetzt:warum ist es so? ich hätte gesagt dass
> es gegen 0 konvergiert.
>
> ich bin für jede hilfe dankbar und hoffe ihr könnt mir
> bei der Aufgabe weiterhelfen.
>  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de