www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - integral log
integral log < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

integral log: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:40 So 06.04.2008
Autor: puldi

[mm] \integral_{}^{}{1 / (x* ln(x))² dx} [/mm]

t = ln (x)

aber wie kann ich das x dann in abhängigkeit von t ausdrücken?

Danke!

        
Bezug
integral log: Antwort
Status: (Antwort) fertig Status 
Datum: 10:53 So 06.04.2008
Autor: Disap


> [mm]\integral_{}^{}{1 / (x* ln(x))² dx}[/mm]
>  
> t = ln (x)
>  
> aber wie kann ich das x dann in abhängigkeit von t
> ausdrücken?

t = ln (x) | [mm] e^{()} [/mm]

[mm] e^t [/mm] = x


  

> Danke!

Bitte!

Bezug
                
Bezug
integral log: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:59 So 06.04.2008
Autor: puldi

Ich komm leider trotzdem nicht weiter...

[mm] \integral_{}^{}{1/(e^t * t²) dx} [/mm]

Bezug
                        
Bezug
integral log: Aufgabe?
Status: (Antwort) fertig Status 
Datum: 11:04 So 06.04.2008
Autor: Disap


> Ich komm leider trotzdem nicht weiter...
>  
> [mm]\integral_{}^{}{1/(e^t * t²) dx}[/mm]  

Das stand da auch nie, du hast am Anfang geschrieben


$ [mm] \integral_{}^{}{1 / (x\cdot{} ln(x))² dx} [/mm] $

da stand [x ln(x) [mm] ]^2 [/mm] (wie man das macht, weiss ich auch nicht)

und nicht [x [mm] ln(x)^2 [/mm] ] (hier solltest du eine andere Substitution nehmen)

Anm: die beiden Terme stehen jeweils im Nenner...

Worum gehts denn jetzt?

Bezug
                        
Bezug
integral log: Antwort
Status: (Antwort) fertig Status 
Datum: 11:32 So 06.04.2008
Autor: angela.h.b.


> Ich komm leider trotzdem nicht weiter...
>  
> [mm]\integral_{}^{}{1/(e^t * t²) dx}[/mm]  

Hallo,

dt muß es heißen.

Ansonsten ist das schon richtig bzw. das, was auch ich mit Deiner Substitution erhalte.

Mein elektronischer Assistent teilt mir mit, daß man dieses Integral nicht "einfach so" lösen kann.

Wo hast Du es her?

Gruß v. Angela

Bezug
        
Bezug
integral log: Antwort
Status: (Antwort) fertig Status 
Datum: 11:36 So 06.04.2008
Autor: ullim

Hi,

gehen wir mal davon aus das folgendes Integral zu lösen ist

[mm] \integral_{}^{}{\bruch{1}{x*ln(x)^2} dx} [/mm]

dann führt die Substitution

t=ln(x) zu

[mm] x=e^t [/mm] und [mm] dt=\bruch{1}{x}*dx=\bruch{1}{e^t}*dx [/mm] also [mm] dx=e^t*dt [/mm]

[mm] \integral_{}^{}{\bruch{1}{e^t*t^2} e^t*dt}=\integral_{}^{}{\bruch{1}{t^2} dt}=-\bruch{1}{t}=-\bruch{1}{ln(x)} [/mm]

mfg ullim



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de