www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - integralberechnung
integralberechnung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

integralberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:38 Mi 12.10.2005
Autor: Snoopy1426

also, meine frage zu dieser aufgabe

[mm] \integral_{0}^{a} [/mm] {ab² dx}=

kann man diese aufgabe überhaupt lösen, da man x suchen sollte, aber ja kein x gegeben ist? Ist das dann egal??

bei der nächsten aufgabe k ist gesucht

[mm] \integral_{0}^{k} [/mm] {(x + 3) dx}=8

( [mm] \bruch{1}{2}x²+ [/mm] 3x)=8

( [mm] \bruch{1}{2}k² [/mm] + 3k)-( [mm] \bruch{1}{2}0² \p [/mm] 3*0)=8

( [mm] \bruch{1}{2}k² [/mm] + 3k) [mm] \m [/mm] 0=8

Und jetzt? Ich weiß zwar, das die lösung 2 herauskommt, durch probieren, aber ich weiß nicht, wie der rechenweg ist!!
Muss ich jetzt erst * [mm] \bruch{1}{2} [/mm] rechnen und dann die wurzel ziehen? Oder ist es eine Quadratische Gleichung? Aber wenn dann kommt doch auch nicht 2 heraus.


        
Bezug
integralberechnung: Ansätze
Status: (Antwort) fertig Status 
Datum: 18:45 Mi 12.10.2005
Autor: Loddar

Hallo Snoopy!


> [mm]\integral_{0}^{a}[/mm] {ab² dx}=
>  
> kann man diese aufgabe überhaupt lösen, da man x suchen
> sollte, aber ja kein x gegeben ist? Ist das dann egal??

Klar kann man diese Aufgabe lösen ;-) ...

Du kannst doch [mm] $ab^2$ [/mm] als konstanten Faktor vor das Integral ziehen:

[mm] $\integral_{0}^{a}{ab^2 \ dx} [/mm] \ = \ [mm] ab^2*\integral_{0}^{a}{1 \ dx} [/mm] \ = \ ...$


Der Rest ist nun klar?






> [mm]\integral_{0}^{k}[/mm] {(x + 3) dx}=8
>  
> ( [mm]\bruch{1}{2}x²+[/mm] 3x)=8
>  
> ( [mm]\bruch{1}{2}k²[/mm] + 3k)-( [mm]\bruch{1}{2}0² +[/mm] 3*0)=8
>  
> ( [mm]\bruch{1}{2}k²[/mm] + 3k) - 0=8

> Muss ich jetzt erst * [mm]\bruch{1}{2}[/mm] rechnen und dann die
> wurzel ziehen? Oder ist es eine Quadratische Gleichung?

Du musst zunächst diese Gleichung mit [mm] $\times [/mm] \ 2$ multiplizieren und anschließend alles auf die linke Seite bringen.

Damit hast Du dann wirklich eine quadratische Gleichung, die Du z.B. mit der MBp/q-Formel lösen kannst.


Dabei entstehen zwei Lösungen (unter anderem auch $2_$ ;-) ...), von der halt eine nicht sinnvoll ist.


Versuchst Du es jetzt nochmal?

Gruß
Loddar


Bezug
                
Bezug
integralberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:46 Mi 12.10.2005
Autor: Snoopy1426

dankeschööön für deine hilfe, hab jetzt auch die zwei raus und bei der anderen aufgabe komm ich auch klar =)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de