inverse Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Hallo (mal wieder),
ich habe da eine Frage. Wen man eine Funktion gegeben hat, und die nach x umstellt und dann x und y vertauscht, dann erhält man die Umkehrfunktion (inverse Funktion). Aber was ist z.B. bei einer Funktion wie x/(x+7). Ich glaube ja das dies keine Umkehrfunktion hat, kann es aber nicht begründen. wann hat denn eine funktion eine Umkehrfunktion und wie bekomme ich sie auch ohne das oben genannte Verfahren heraus???
Wäre sehr erfreut über eure Antworten
schöne grüße
searchgirl
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:55 Fr 15.04.2005 | Autor: | Max |
> Hallo (mal wieder),
Hallo searchgirl,
> ich habe da eine Frage. Wen man eine Funktion gegeben hat,
> und die nach x umstellt und dann x und y vertauscht, dann
> erhält man die Umkehrfunktion (inverse Funktion). Aber was
> ist z.B. bei einer Funktion wie x/(x+7). Ich glaube ja das
> dies keine Umkehrfunktion hat, kann es aber nicht
> begründen.
Tatsächlich haben die meisten Funktionen keine Umkehrfunktion. In vielen Fällen kann man aber den Definitionsberech so beschränken, dass die Funktion mit diesem Definitionsbereich umkehrbar wird.
Notwendig dafür, dass man eine Umkehrfunktion existiert ist, dass die Umkehrfunktion [mm] $y\mapsto [/mm] x$ eindeutig ist. Da aber auch schon die Funktion eindeutig war bedeutet dies, dass jedem $x$ genau ein $y$ zugeordnet wird. Das ist zB immer der Fall, wenn die Funktion streng monton steigend (fallend) ist. Zu solchen Funktionen gehören die Exponetialfunktionen und alle linearen Funktionen.
Die Funktion, die du ausgewählt hast ist in ganzen Definitionsbereich [mm] $\mathbb{D}=\IR\setminus\{-7\}$ [/mm] umkehrbar. Es gilt wegen:
[mm] $x=\frac{y}{y+7} \gdw x=1-\frac{7}{y+7} \gdw \frac{7}{y+7}=1-x \gdw \frac{y+7}{7}=\frac{1}{1-x} \gdw y+7=\frac{7}{1-x} \gdw y=\frac{7}{1-x}-7$
[/mm]
dass [mm] $f^{-1}(x)=\frac{7}{1-x}-7$ [/mm] die Umkehrfunktion zu [mm] $f(x)=\frac{x}{x+7}$. [/mm] Es gilt auch [mm] $f\left(f^{-1}(x)\right)=f^{-1}\left(f(x)\right)=id(x)=x$ [/mm] wie gefordert.
Bei diesem Beispiel sieht man auch gut, dass für Umkerhfunktionen gilt $f: [mm] \mathbb{D} \to \mathbb{W}$ [/mm] und [mm] $f^{-1}: \mathhbb{W} \to \mathbb{D}$.
[/mm]
Die Funktion $f$ hat zB die Definitionsmenge [mm] $\mathbb{D}_f=\mathbb{R}\setminus\{-7\}$ [/mm] und die Wertemenge [mm] $\mathbb{W}_f=\mathhbb{R}\setminus\{1\}$. [/mm] Die Funktion [mm] $f^{-1}$ [/mm] hat
[mm] $\mathbb{D}_{f^{-1}}=\mathbb{R}\setminus\{1\}$ [/mm] und [mm] $\mathbb{W}_{f^{-1}}=\mathhbb{R}\setminus\{-7\}$.
[/mm]
Gruß Brackhaus
|
|
|
|
|
Hallo Max,
ersteinmal danke für deine Antwort. Jetzt habe ich trotzdem noch mal vielleicht eine blöde frage, wie bist du auf den Weg zur Umkehrfunktion gekommen.
also diesem Weg
$ [mm] x=\frac{y}{y+7} \gdw x=1-\frac{7}{y+7} \gdw \frac{7}{y+7}=1-x \gdw \frac{y+7}{7}=\frac{1}{1-x} \gdw y+7=\frac{7}{1-x} \gdw y=\frac{7}{1-x}-7 [/mm] $
(das vertauschen von x und y werten verstehe ich ja noch aber danach)
danke
searchgirl
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:04 Fr 15.04.2005 | Autor: | Max |
Hallo,
das waren einfache Äquivalenzumformungen und im Schritt von der 3. zur 4. Gleichung habe ich nur den Kehrwert genommen.
Guck es dir mal in Ruhe an.
Max
|
|
|
|
|
Hallo nochmal Max,
ich bin jetzt mal die Aufgabe in Ruhe durchgegangen. Eigentlich sind mir deine Schritte fast alle klar geworden, außer der erste schritt:
$ [mm] x=\frac{y}{y+7} \gdw x=1-\frac{7}{y+7}
[/mm]
Ich habe das gleiche dann mal mit x/(x+1) probiert und bin zu Folgendem Ergebnis gekommen:
x=y/(y+1) [mm] \gdw [/mm] x= 1-1/(y+1) /gdw 1-x=1/y+1 /gdw 1/(1-x)=y+1 /gdw 1/(1-x) +1
Würde mich sehr über deine Antwort freuen.
schöne grüße
searchgirl
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:10 Fr 15.04.2005 | Autor: | searchgirl |
Hi Julius und auch Max,
danke erstmla für euer Bemühen. Oh mein Gott, dann nimmt man mal eine ull dazu, darauf mus man erstmal kommen!!!
Jedenfalls danke
schöne grüße
searchgirl
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 01:06 Sa 16.04.2005 | Autor: | mathrix |
Hi searchgirl,
das mit dem "die Null addieren" finde ich lustig. Ich habe vorhin auch deine Aufgabe gelöst (ich wusste eigentlich noch gar nichts von Inversfunktionen), bin aber zu einem - auf den ersten Blick - anderen Ergebnis als Brackhaus gekommen:
[mm]x = \bruch{y}{y+7} \gdw x \cdot (y+7) = y \gdw yx + 7x = y \gdw 7x = y - yx \gdw 7x=y \cdot (1-x) \gdw \bruch{7x}{1-x} = y[/mm]
Um nun zu kontrollieren, ob dieses "seltsame" [mm]\bruch{7}{1-x}-7[/mm] gleich meinem [mm]\bruch{7x}{1-x}[/mm] ist, habe ich sie einfach gleichgesetzt:
[mm]\bruch{7}{1-x}-7 = \bruch{7x}{1-x} \gdw \bruch{7-7(1-x)}{1-x} = \bruch{7x}{1-x} \gdw \bruch{7-7+7x}{1-x} = \bruch{7x}{1-x}[/mm] wahre Aussage (mir fiel natürlich gleich ein Stein vom Herzen
Das "Null addieren" haben wir jedoch auch im Unterricht schon des öfteren gemacht (bei der Herleitung von Formeln (z.B. Quotientenregel)).
Gruß,
mathrix
|
|
|
|