www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - invertierbare Matrizen
invertierbare Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

invertierbare Matrizen: Anzahl der Elemente GL(Z/pZ)
Status: (Frage) beantwortet Status 
Datum: 17:32 Do 19.01.2006
Autor: beutelsbacher

Aufgabe
Zu berechnen ist die Anzahl der Elemente von [mm] GL_{2}( \IF_{p}). [/mm]

Hallo zusammen!
oben genannte Aufgabenstellung bereitet mir Kopfzerbrechen. Ich habe hier schon im Forum danach gesucht und die Formel dafür gefunden. [mm] (p^{2}-1)(p^{2}-p). [/mm] Ich dachte an einen Ansatz über Determinanten, da ja für invertierbare Matrizen A gilt: det(A) [mm] \not= [/mm] 0. Also wollte ich die Anzahl der nicht-invertierbaren 2x2 Matrizen von [mm] p^{4^{2}} [/mm] (der Menge aller möglichen 2x2-Matrizen) abzuziehen. Aber da komm ich irgendwie net weiter. Falscher Ansatz??
Irgendwer eine Idee??
Danke schonmal.

        
Bezug
invertierbare Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:51 Do 19.01.2006
Autor: Hanno

Hallo.

Die Menge [mm] $Gl_n{\IF_p}$ [/mm] lässt sich bijektiv auf die Menge der n-Tupel linear unabhängiger Vektoren aus [mm] $\IF_p^n$ [/mm] abbilden. Wir können also auch zählen, auf wie viele Weisen wir ein solches n-Tupel konstruieren können.
Für den ersten Vektor gibt es [mm] $p^n-1$ [/mm] Möglichkeiten; warum? jede Komponente kann die Werte $0,1,2,...,p-1$ annehmen, der Nullvektor ist jedoch auszuschließen, da die Menge der Vektoren im entstehenden n-Tupel sonst nicht mehr linear unabhängig sein könnte. Für den zweiten Vektor bleiben genau die Vektoren, die nicht im Erzeugnis des ersten liegen; da es genau $p$ Vielfache des ersten Vektors gibt, gibt es von diesen genau [mm] $p^n-p$. [/mm] Der dritte Vektor darf nicht im Erzeugnis der ersten beiden liegen, wofür es, wie man analog begründet, genau [mm] $p^n-p^2$ [/mm] Möglichkeiten gibt.
So fortfahrend erhält man [mm] $(p^n-1)(p^n-p)(p^n-p^2)\cdots (p^n-p^{n-1})$ [/mm] als Anzahl der betrachteten $n$-Tupel bzw. der Mächtigkeit von [mm] $Gl_{n}{\IF_p}$. [/mm]


Liebe Grüße,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de