www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - jordan-normalform für die umkehrfunktion
jordan-normalform für die umkehrfunktion < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

jordan-normalform für die umkehrfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:54 Mo 26.07.2004
Autor: tes

hallo! :)

ich lerne gerade auf meine LA-klausur und verzweifle an folgender aufgabe:

im a-teil muss man die jnf für eine funktion phi bestimmen, was ich hinbekommen habe, doch in teil b soll man die jnf für (phi)^(-1), also für die umkehrfunktion, bestimmen.

ich dachte, dass ich einfach die inverse der jnf von phi nehme, da man ja auch die jnf von [mm] (phi)^2 [/mm] durch quadrieren der jnf von phi erhält, wo man dann nur noch basisvektoren vertauschen muss.
aber ich bekomme etwas anderes heraus als die lösung :(

die frage ist nun, wie denn die jnf der umkehrabbildung mit der ursprünglichen jnf zusammenhängt?
wäre super, wenn mir jemand da weiterhelfen könnte!

lieben gruß,
tes

ps: Ich habe diese Frage in keinem weiteren Forum gestellt. (ist wohl pflicht, das hier zu posten, mag nicht gesperrt werden :) )

        
Bezug
jordan-normalform für die umkehrfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:27 Mo 26.07.2004
Autor: Wessel

Hallo,

also - ich habe ihm Angebot eine "Determinantenformel für die Inverse Matrix".

Für $A [mm] \in [/mm] M(n [mm] \times n,\IK)$ [/mm]  ist  [mm] $\tilde{a_{ij}}:=(-1)^{i+j}\det A_{ji}$ [/mm] die zu $A$ komplementäre Matrix [mm] $\tilde{A}$. [/mm]  Besitzt $A$ eine nichtverschwindende Determinante, dann ist die Inverse gegeben durch [mm] $A^{-1}:=\frac{1}{\det A} \tilde{A}$. [/mm]

Für $A [mm] \in [/mm] M(2 [mm] \times 2,\IK)$ [/mm] wäre dann:

$  [mm] \pmat{ a & b \\ c & d }^{-1} [/mm] = [mm] \frac{1}{ad-bc} \pmat{ d & -b \\ -c & a }$ [/mm]

Vielleicht hilft das weiter.

Beste Grüße,
Stefan

Bezug
        
Bezug
jordan-normalform für die umkehrfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:40 Di 27.07.2004
Autor: Astrid

Hallo Tes,

ich hatte folgende Gedanken zu dieser Aufgabe:
Angenommen, [mm] A [/mm] ist zu [mm] \Phi [/mm] gehörige quadratische Matrix und die Voraussetzungen für die Existenz der JNF J seien gegeben.
Dann existiert ja eine Basistransformationsmatrix T so dass:
[mm] T^{-1}* A * T = J [/mm]

Diese Gleichung können wir nach A "umstellen":
[mm] T * T^{-1}* A * T * T^{-1} = T* J * T^{-1} [/mm]
also [mm] A = T * J * T^{-1} [/mm]
und somit [mm] A^{-1} = (T * J * T^{-1})^{-1} = (T^{-1})^{-1} * J^{-1} * T^{-1} = T * J^{-1} * T^{-1} [/mm]
was wiederum äquivalent ist zu:
[mm] T^{-1} * A^{-1} * T = J^{-1} [/mm]

woraus ich ablese, dass es eine Basistransformationsmatrix gibt, so dass [mm] \Phi [/mm] dargestellt werden kann als [mm] J^{-1}. [/mm]
Und während ich das schreibe fällt mir auf, dass natürlich nun die große Frage ist, ob [mm] J^{-1} [/mm] wieder einer JNF ist... Wahrscheinlich nicht, aber ich lass' die Überlegung trotzdem erstmal stehen.

Wenn du mit einer konkreten Matrix rechnen musst, wird dir wohl nichts anderes übrig bleiben, als die Inverse zu berechnen und den ganzen Weg noch einmal von vorne zu gehen. Mir fällt jedenfalls auf die Schnelle keine geschickterer Weg ein.

Naja,
Gruß Astrid

Bezug
        
Bezug
jordan-normalform für die umkehrfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 02:55 Mi 28.07.2004
Autor: Stefan

Hallo!

Ist

[mm]J_F = \begin{pmatrix} a_1 E_{n_1} + N_{n_1} & 0 & \ldots & 0 \\ 0 & a_2 E_{n_2} + N_{n_2} & \ddots & \vdots \\ \vdots & 0 & \ddots & 0\\ 0 & \ldots & 0 & a_r E_{n_r} + N_{n_r} \end{pmatrix}[/mm]

die Jordansche Normalform von $F$ und $F$ invertierbar, so kann man nachrechnen, dass

[mm]J_{F^{-1}} = \begin{pmatrix} \frac{1}{a_1} E_{n_1} + N_{n_1} & 0 & \ldots & 0 \\ 0 & \frac{1}{a_2} E_{n_2} + N_{n_2} & \ddots & \vdots \\ \vdots & 0 & \ddots & 0 \\ 0 & \ldots & 0 & \frac{1}{a_r} E_{n_r} + N_{n_r} \end{pmatrix}[/mm]

die Jordansche Normalform von [mm] $F^{-1}$ [/mm] ist.

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de