www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - kanonische Projektion
kanonische Projektion < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kanonische Projektion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:36 Mo 03.04.2006
Autor: sonnenblumale

Aufgabe
Sei $K = [mm] \IZ/5, [/mm] V = [mm] K^4, [/mm] U = [mm] K, [/mm] U' = [mm] K, v_1 [/mm] = (1,2,3,1), [mm] v_2 [/mm] = (0,1,0,2), [mm] v_3 [/mm] = (1,0,2,1), [mm] v_4 [/mm] = (1,1,1,0)$

a) Zeige: U' ist ein Komplement von U in V
b) Seien  [mm] \pi_U [/mm] und [mm] \pi_{U'} [/mm] die zu V = U  [mm] \oplus [/mm] U' gehörige kanonischen Projektionen.
Berechne [mm] \pi_U(v) [/mm] und [mm] \pi_U'(v) [/mm] für $v = (1,3,1,2)$

Hallo!

ad a) Reicht es hier, wenn ich zeigen, dass die Zusammensetzung der beiden Basen eine Basis von V ist?

ad b) hier ist ja vorausgesetzt, dass die Summe der Unterräume direkt ist, somit kann ich eine Basis von V basteln, wenn ich die Basen der Unterräume zusammenstöpsle.
Wir haben dann weiters eine Übergangsmatrix von $w = [mm] (w_1, w_2, w_3, w_4)$ [/mm] ... Basis von V  nach $u = [mm] (v_1, v_2, v_3, v_4)$ [/mm] (Zusammensetzung der Basen der Unterräume und ebenfalls Basis von V) in der Vorlesungsunterlage bei der Berechnung.

Kann ich hier nicht einfach annehmen, dass [mm] $w*I_4 [/mm] = u$, weil sich so das WEiterrechnen extrem vereinfacht.

thx & greetz
sonnenblumale

        
Bezug
kanonische Projektion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:08 Di 04.04.2006
Autor: banachella

Hallo!

zu a):
Insgesamt musst du zeigen, dass [mm] $U\cap U'=\{0\}$ [/mm] und $U+U'=V$.  Da es sich hier um einen endlich-dimensionalen Vektorraum handelt reicht es in der Tat nachzurechnen, dass [mm] $\{u_1,u_2,u_3,u_4\}$ [/mm] eine Basis von $V$ ist.

zu b):
Zunächst eine Anmerkung: Eigentlich würde ich hier statt [mm] $U\oplus [/mm] U'$ eher $U+U'$ erwarten, da es sich ja nicht um eine orthogonale Summe handelt, oder? Ansonsten bräuchtest du nämlich ein Skalarprodukt.
Diese Aufgabe kannst du in der Tat mit Hilfe einer Übergangsmatrix berechnen. Oder du kannst das lineare Gleichungssystem
[mm] $v=\kappa_1 u_1+\kappa_2 u_2+\kappa_3 u_3+\kappa_4 u_4$ [/mm] mit [mm] $\kappa_i\in [/mm] K$ lösen.
Dann ist [mm] $\pi_U(v)=\kappa_1 u_1+\kappa_2 u_2$ [/mm] und [mm] $\pi_{U'}(v)=\kappa_3 u_3+\kappa_4 u_4$. [/mm]

> Kann ich hier nicht einfach annehmen, dass [mm]w*I_4 = u[/mm], weil
> sich so das WEiterrechnen extrem vereinfacht.

Diese Frage verstehe ich leider nicht ganz. Woher kommt $w$? Und was meinst du mit [mm] $I_4$? [/mm] Die Identitätsmatrix?

Gruß, banachella

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de