www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - kartesische Form in Polarform
kartesische Form in Polarform < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kartesische Form in Polarform: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:07 Do 29.04.2010
Autor: lzaman

Aufgabe
geg.: [mm] \underline{Z} [/mm] = cos(2t)+ j sin(2t)

ges.: [mm] re^{j\varphi} [/mm]

Hallo, muss ich etwa den Ausdruck (2t) wie eine Variable behandeln und mit cos² und sin² rechnen? Oder mache ich einen Gedankenfehler bezüglich cos und sin funktion?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
kartesische Form in Polarform: Antwort
Status: (Antwort) fertig Status 
Datum: 18:12 Do 29.04.2010
Autor: fencheltee


> geg.: [mm]\underline{Z}[/mm] = cos(2t)+ j sin(2t)
>  
> ges.: [mm]re^{j\varphi}[/mm]
>  Hallo, muss ich etwa den Ausdruck (2t) wie eine Variable
> behandeln und mit cos² und sin² rechnen? Oder mache ich
> einen Gedankenfehler bezüglich cos und sin funktion?
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

du musst nur berücksichtigen, dass  [mm] e^{\mathrm{i}\,\varphi} [/mm] = [mm] \cos\left(\varphi \right) [/mm] + [mm] \mathrm{i}\,\sin\left( \varphi\right) [/mm]

woraus auch folgt, dass  [mm] r*e^{\mathrm{i}\,\varphi} [/mm] = [mm] r*(\cos\left(\varphi \right) [/mm] + [mm] \mathrm{i}\,\sin\left( \varphi\right) [/mm] )

gruß tee


Bezug
                
Bezug
kartesische Form in Polarform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:17 Do 29.04.2010
Autor: lzaman

also wenn ich das richtig sehe müsste r=1 sein oder?

Bezug
                        
Bezug
kartesische Form in Polarform: richtig
Status: (Antwort) fertig Status 
Datum: 18:18 Do 29.04.2010
Autor: Loddar

Hallo lzaman!


[ok] Genau.


Gruß
Loddar


Bezug
        
Bezug
kartesische Form in Polarform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:36 Do 29.04.2010
Autor: lzaman

Darf ich dann die Lösung so schreiben: [mm] 1e^{j\tan(2t)} [/mm]

mit [mm] \wurzel{(cos(x))^2+ (sin(x))^2} [/mm] ist immer = 1

und [mm] \bruch{sin (x)}{cos (x)} [/mm] = tan(x)
?

Vielen Dank für das Super Forum! Ihr seid spitze!

Bezug
                
Bezug
kartesische Form in Polarform: Antwort
Status: (Antwort) fertig Status 
Datum: 18:42 Do 29.04.2010
Autor: schachuzipus

Hallo Izaman,

> Darf ich dann die Lösung so schreiben: [mm]1e^{j\tan(2t)}[/mm]



Wenn du [mm] $\cos(2t)+j\cdot{}\sin(2t)$ [/mm] umformen möchtest, so hast du doch die Formel gegeben:

[mm] $\cos(2t)+j\cdot{}\sin(2t)=1\cdot{}e^{j\cdot{}2t}=e^{j\cdot{}2t}$ [/mm]

Woher nimmst du denn da den Tangens?

LG

schachuzipus


Bezug
                        
Bezug
kartesische Form in Polarform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:49 Do 29.04.2010
Autor: lzaman

Jo muss man erstmal sehen wenn man sich den ganzen Tag mit Mathe beschäftigt: Habe es nicht gemerkt das hier eine trigonometrische Form vorliegt. Bin bei dieser Aufgabe von der kartesischen Form ausgegangen.

Danke



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de