www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - kein grenzwert
kein grenzwert < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kein grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:08 Di 11.11.2008
Autor: gigi

Aufgabe
zeige: lim [mm] \wurzel{n} [/mm] existiert nicht!

hallo!

wenn man zu [mm] n^\bruch{1}{2} [/mm] umschreibt, sieht man doch schon sehr gut, dass dies divergiert, denn [mm] n\in \IN [/mm] ist ja unendlich.

was soll ich da noch beweisen? oder ist es nötig, zu zeigen, dass n keine obere schranke besitzt etc??

tschau und danke

        
Bezug
kein grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 09:38 Di 11.11.2008
Autor: angela.h.b.


> zeige: lim [mm]\wurzel{n}[/mm] existiert nicht!
>  hallo!
>  
> wenn man zu [mm]n^\bruch{1}{2}[/mm] umschreibt, sieht man doch schon
> sehr gut, dass dies divergiert, denn [mm]n\in \IN[/mm] ist ja
> unendlich.

Hallo,

solche Betrachtungen können ganz schön danebengehen, und "sieht man schon sehr gut" ist kein besonders schlagkräftiges Argument.

Du mußt bedenken, daß es in diesem Stadium des Studiums mindestens ebensosehr um die saubere Argumentation geht wie um die Aussagen an sich.

> was soll ich da noch beweisen?

Die Aussage.

Wie Du das machst, kommt natürlich darauf an, was Dir zur Verfügung steht. Im Moment wahrscheinlich die Konvergenz von Folgen mit ein bißchn Drumherum.

>  oder ist es nötig, zu
> zeigen, dass n keine obere schranke besitzt etc??

Ja.

Gruß v. Angela


Bezug
                
Bezug
kein grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:07 Di 11.11.2008
Autor: gigi

was steht mir zur verfügung?--die epsilon-umgebung zb.
es müsste dann also ein a existieren, sodass [mm] |\wurzel{n}-a|<\varepsilon. [/mm]

kann ich mit diesem ansatz beweisen? wie forme ich das dann um, um auf einen widerspruch zu stoßen?

Bezug
                        
Bezug
kein grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 11:33 Di 11.11.2008
Autor: angela.h.b.


> kann ich mit diesem ansatz beweisen?

Hallo,

Du hattest vorhin doch schon gesagt, wie Du es machen willst.

Du sagtest sinngemäß: zeigen, daß es keine obere Schranke gibt.


Nimm an, daß die Folge konvergiert. Du kannst Dir sogar überlegen, daß es eine obere Schranke in den natürlichen Zahlen gibt.

Und dann führst Du diese Annahme zum Widerspruch.

Gruß v. Angela



Bezug
        
Bezug
kein grenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:52 Di 11.11.2008
Autor: Karl_Pech

Hallo gigi,


Siehe dir die Definition für []bestimmte Divergenz an. Du mußt zeigen, daß deine Folge diese Definition erfüllt. Da [mm]\sqrt{n}[/mm] immer positiv ist, kann man die Definition hier wohl auch auf [mm]\forall M\in\mathbb{R}_{>0}[/mm] einschränken.


Gruß
Karl




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de