www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Numerik linearer Gleichungssysteme" - "keine LR-Zerlegung"
"keine LR-Zerlegung" < Lin. Gleich.-systeme < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

"keine LR-Zerlegung": Beispiel
Status: (Frage) beantwortet Status 
Datum: 20:50 Di 09.11.2004
Autor: Bastiane

Hallo!
Ich soll ein Beispiel angeben, für eine Matrix A [mm] \in GL(2,\IR), [/mm] die keine LR-Zerlegung besitzt.
Das Standardbeispiel ist doch
[mm] A=\pmat{ 0 & 1 \\ 1 & 0 } [/mm]

Dies Matrix ist doch invertierbar, nämlich [mm] A^{-1}=\pmat{ 0 & 1 \\ 1 & 0 }, [/mm] und ohne Spaltentausch oder so gibt es doch keine LR-Zerlegung, oder?

Aber da das schon in der Vorlesung vorkam, finde ich es eigentlich komisch...

Oder habe ich etwas falsch gemacht?

Viele Grüße
Bastiane
[banane]


        
Bezug
"keine LR-Zerlegung": Antwort
Status: (Antwort) fertig Status 
Datum: 09:44 Mi 10.11.2004
Autor: Stefan

Liebe Christiane!

Stimmt, das ist in der Tat das klassische Beispiel dafür, dass man i.A. ohne Permutationsmatiruzen nicht auskommt. Vielleicht sollt ihr das ja noch beweisen?

Gäbe es eine Darstellung

[mm] $\begin{pmatrix} 1 & 0 \\ l_{21} & 1 \end{pmatrix} \cdot \begin{pmatrix} r_{11} & r_{12} \\ 0 & r_{22} \end{pmatrix} [/mm] = [mm] \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, [/mm]

so müssten die folgenden Gleichungen wahr sein:

(1) [mm] $r_{11} [/mm] = 0$
(2) [mm] $r_{12} [/mm] = 1$
(3) [mm] $l_{21} \cdot r_{11} [/mm] = 1$
(4) [mm] $l_{21} \cdot r_{12} [/mm] + [mm] r_{22} [/mm] = 0$.

Offenbar stellen aber die beiden Gleichungen (1) und (3) einen Widerspruch dar.

Liebe Grüße
Stefan

Bezug
                
Bezug
"keine LR-Zerlegung": Danke.
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:42 Mi 10.11.2004
Autor: Bastiane

Hallo Stefan!

Danke für die Zustimmung und den Beweis. Ich hatte es mir zwar selber schon so ausgerechnet, aber jetzt beim Aufschreiben hätte ich den Schmierzettel wohl nicht mehr gefunden, und im Moment wäre ich da glaube ich gar nicht mehr so schnell drauf gekommen. Aber eigentlich ist es ja ganz einfach...

Viele Grüße
:-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de