www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - keine Varianz
keine Varianz < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

keine Varianz: Beweis
Status: (Frage) beantwortet Status 
Datum: 17:36 Mi 09.11.2011
Autor: mikexx

Aufgabe
Die Verteilung der Zufallsvariable X sei gegeben durch

[mm]P(X=\sqrt{i})=c\cdot i^{-2}, i\in\mathbb N, c=1/\sum_{i=1}^{\infty}i^{-2}=\frac{6}{\pi^2}[/mm].

Zeigen Sie, daß X einen Erwartungswert, jedoch keine Varianz besitzt.

Hallo, nochmal ich. :-)

Hier sind meine Ideen:

[mm]E(X)=\sqrt{1}\cdot \frac{6}{\pi^2}\cdot \frac{1}{1^2}+\sqrt{2}\cdot\frac{6}{\pi^2}\cdot\frac{1}{2^2}+...=\frac{6}{\pi^2}\cdot\sum_{i=1}^{\infty}\frac{\sqrt{i}}{i^2}=\frac{6}{\pi^2}\sum_{i=1}^{\infty}\frac{1}{i^{3/2}}[/mm]

Da die Reihe konvergiert (da der Exponent im Nenner größer als 1 ist), existiert also der Erwartungswert.

Nun zu der Varianz.

Es gilt ja [mm]\operatorname{Var}(X)=E(X^2)-E(X)^2[/mm].

Nun ist ja [mm]E(X)^2<\infty[/mm].

Jedoch ist [mm]E(X^2)=\frac{6}{\pi^2}\sum_{i=1}^{\infty}\frac{1}{i}[/mm] und das ist ja die harmonische Reihe, die divergiert!

Also hat man (salopp gesagt):

[mm]\operatorname{Var}(X)=\infty-\text{endlicher Wert}=\infty[/mm] und deswegen hat X keine Varianz.




Ist das so korrekt, was ich aufgeschrieben habe?

Ich würde mich freuen, wenn mir jemand antwortet!

Liebe Grüße

mikexx

        
Bezug
keine Varianz: Antwort
Status: (Antwort) fertig Status 
Datum: 17:43 Mi 09.11.2011
Autor: luis52


> Die Verteilung der Zufallsvariable X sei gegeben durch
>  
> [mm]P(X=\sqrt{i})=c\cdot i^{-2}, i\in\mathbb N, c=1/\sum_{i=1}^{\infty}i^{-2}=\frac{6}{\pi^2}[/mm].
>  
> Zeigen Sie, daß X einen Erwartungswert, jedoch keine
> Varianz besitzt.
>  Hallo, nochmal ich. :-)
>  
> Hier sind meine Ideen:
>  
> [mm]E(X)=\sqrt{1}\cdot \frac{6}{\pi^2}\cdot \frac{1}{1^2}+\sqrt{2}\cdot\frac{6}{\pi^2}\cdot\frac{1}{2^2}+...=\frac{6}{\pi^2}\cdot\sum_{i=1}^{\infty}\frac{\sqrt{i}}{i^2}=\frac{6}{\pi^2}\sum_{i=1}^{\infty}\frac{1}{i^{3/2}}[/mm]
>  
> Da die Reihe konvergiert (da der Exponent im Nenner
> größer als 1 ist), existiert also der Erwartungswert.
>  
> Nun zu der Varianz.
>  
> Es gilt ja [mm]\operatorname{Var}(X)=E(X^2)-E(X)^2[/mm].
>  
> Nun ist ja [mm]E(X)^2<\infty[/mm].
>  
> Jedoch ist
> [mm]E(X^2)=\frac{6}{\pi^2}\sum_{i=1}^{\infty}\frac{1}{i}[/mm] und
> das ist ja die harmonische Reihe, die divergiert!
>  
> Also hat man (salopp gesagt):
>  
> [mm]\operatorname{Var}(X)=\infty-\text{endlicher Wert}=\infty[/mm]
> und deswegen hat X keine Varianz.
>  
>
>
>
> Ist das so korrekt, was ich aufgeschrieben habe?

[ok]


vg Luis


Bezug
                
Bezug
keine Varianz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:58 Mi 09.11.2011
Autor: mikexx

Wieso sagt man eigentlich, daß X keine Varianz besitzt, wenn [mm]\operatorname{Var}(X)=\infty[/mm]?


Achso, cool, daß ich die Aufgabe richtig bewiesen habe; vielen Dank für Dein [ok].

Bezug
                        
Bezug
keine Varianz: Antwort
Status: (Antwort) fertig Status 
Datum: 18:26 Mi 09.11.2011
Autor: luis52


> Wieso sagt man eigentlich, daß X keine Varianz besitzt,
> wenn [mm] $\operatorname{Var}(X)=\infty$? [/mm]
>  

Konvention. Man braucht in Anwendungen die Voraussetzung [mm]\operatorname{Var}(X)<\infty[/mm], z.B. beim Zentralen Grenzwertsatz oder bei der Standardisierung von $X_$.

vg Luis

Bezug
                                
Bezug
keine Varianz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:27 Mi 09.11.2011
Autor: mikexx

Okay.

Darf ich hier noch eine zweite Frage (ähnlich wie die obige) stellen oder soll ich einen neuen Thread dafür öffnen?

Bezug
                                        
Bezug
keine Varianz: bitte neuer Thread
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:29 Mi 09.11.2011
Autor: Loddar

Hallo mikexx!


Bitte eröffne für eine neue / eigenständige Frage einen neuen Thread - danke.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de