kern < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei [mm] \IR [/mm] [X] der [mm] \IR-Vektorraum [/mm] der Polynome in einer Variablen X mit Koeffizienten in [mm] \IR. [/mm] Wir betrachten die Abbildung
[mm] \bruch{d}{dx} [/mm] : [mm] \IR [/mm] [X] [mm] \to \IR [/mm] [X] , P = [mm] \summe_{i=0}^{deg P} a_{i} X^{i} \mapsto \summe_{i=1}^{deg P} [/mm] i [mm] a_{i} X^{i-1}.
[/mm]
Zeigen Sie, dass [mm] \bruch{d}{dx} [/mm] : [mm] \IR [/mm] [X] [mm] \to \IR [/mm] [X] surjektiv aber nicht injektiv ist. Berechnen Sie ker [mm] \bruch{d}{dx}. [/mm] |
Hallo!
Ich bin ein bisschen verwirrt.
Bisher dachte ich, dass man den Kern nur von Matrizen bilden kann. Da macht man das doch mit einem Gleichungssystem. Aber so etwas kann man hier doch nicht machen, oder?
Und zu injektiv... da brauch man ein Gegenbeispiel, oder? Aber wie findet man da eines heraus?
Zu surjektiv... da glit doch
[mm] \forall [/mm] w [mm] \in \IR [/mm] [X] [mm] \exists [/mm] v [mm] \in \IR [/mm] [X]: [mm] \bruch{d}{dx} [/mm] (v) = w ?
Was bringt mir das hier?
Ich würde mich über eine Hilfe freuen! Danke!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:51 Di 30.11.2010 | Autor: | schotti |
der kern einer linearen abbildung ist die menge, die auf 0 abgebildet wird. (dabei spielt es natürlich keine rolle, ob die lineare abbildung durch eine matrix oder sonstwie dargestellt ist.)
die "ableitungs-abbildung" ist nicht injektiv, weil mehrere poynome die gleiche ableitung haben können. wodurch sich polynome mit gleicher ableitung noch unterscheiden können, das weisst du, seit du bei der unbestimmten integration gelernt hast, immer noch so eine blöde integrationskonstante hinzu zu addieren. gleich gut ist natürlich, wenn du zeigst, dass der kern der abbildung nicht leer ist. welche polynome werden also zum 0-polynom?
und für die surjektivität schreibst du dir einfach ein beliegiges, allgemeines polynom hin und bedenkst, dass sein "stammpolynom" auch in R[X] liegt. ist so ein fall, wo man auch mal "trivial" aufs übungsblatt schreiben darf...
|
|
|
|
|
Danke, das mit dem injektiv hab ich jetzt gecheckt.
Aber beim Kern habe ich noch eine Frage: Es wäre mir klar, wenn ich einen Vektor (x,y,z), der auf (x+1,y-z,x+2y) oder so was abgebildet würde, aber hier habe ich ja nichts dergleichen!
Und zur Surjektivität... vllt steh ich gerade einfach auf dem Schlauch, aber ich blicks immer noch nicht!
|
|
|
|
|
> Danke, das mit dem injektiv hab ich jetzt gecheckt.
>
> Aber beim Kern habe ich noch eine Frage: Es wäre mir klar,
> wenn ich einen Vektor (x,y,z), der auf (x+1,y-z,x+2y) oder
> so was abgebildet würde, aber hier habe ich ja nichts
> dergleichen!
Welche Polynome werden auf Null abgebildet. Anders gefragt welche Polynome werden Null beim Ableiten?
>
> Und zur Surjektivität... vllt steh ich gerade einfach auf
> dem Schlauch, aber ich blicks immer noch nicht!
f:U-> V ist Surjektiv bedeutet doch, dass für jedes Element v aus V ein Element u aus U mit f(u)=v existiert.
Gib die ein beliebiges Polynom vor. Am Beispiel [mm]2x[/mm]. Man hat zu zeigen, dass es ein Polynom gibt, welches durch die Abbildung [mm] \bruch{d}{dx} [/mm] auf [mm]2x[/mm] abgebildet wird. Wie zum Beispiel [mm]x^2[/mm]. Es würde also reichen eine Abbildungsvorschrift anzugeben die ein solches Polynom baut. schotti hat dich mit der Stammfunktion doch schon darauf hingestupst.
[mm]\phi : R[X] \to R[X][/mm] mit [mm]\sum_{i=0}^n a_iX^i\mapsto \sum_{i=0}^n }\frac{1}{i+1}a_i*x^{i+1}[/mm] gibt dir ein solches Polynom.
|
|
|
|