www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maßtheorie" - kleinste sigma-Algebra
kleinste sigma-Algebra < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kleinste sigma-Algebra: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:28 Mo 03.12.2012
Autor: Richie1401

Aufgabe 1
Es sei [mm] X=\IR^1 [/mm] und [mm] A_1=\{0\} [/mm] sowie [mm] A_2=[1,2] [/mm] seien Teilmengen von $X$. Bestimmen Sie die kleinste [mm] $\sigma$-Algebra $\mathfrak{A}$ [/mm] über $X$, die [mm] A_1 [/mm] und [mm] A_2 [/mm] enthält. (Anzahl und Darstellung der Elemente)

Aufgabe 2
[mm] \mathfrak{S} [/mm] sei das System aller Teilmengen von [mm] \IR^1 [/mm] der Gestalt [mm] ]-\infty,a[ [/mm] für alle [mm] a\in\IR^1. [/mm] Bestimmen Sie die kleinste [mm] $\sigma$-Algebra, [/mm] die [mm] \mathfrak{S} [/mm] enthält.

Schönen guten Tag,

bei der Nummer 1) bin ich mir recht sicher.
Ich habe folgendes ermittelt:
[mm] \mathfrak{A}=\{\emptyset,\ \IR^1,\ \IR^1\setminus\{0\},\ \IR^1\setminus[1,2],\ [1,2],\ \{0\}\} [/mm]

Begründung: Zunächst muss die Grundmenge und die leere Menge enthalten sein. Dann müssen die Mengen [mm] A_1 [/mm] und [mm] A_2 [/mm] selbst drin sein, sowie deren Komplemente. Die Vereinigung von den Mengen ist selbst schon wieder in den Mengen, daher muss man diese nicht noch mit hinzufügen.
Somit habe ich 6 Elemente mit obiger Darstellung.



Nummero 2:
Im Grunde ist es doch dasselbe Prinzip, nicht?
[mm] \mathfrak{A}_\sigma=\{\emptyset, \ \IR^1, \ (-\infty,a), \ [a,\infty)\} [/mm]


Ehrlich gesagt zweifel ich eben an der Richtigkeit. Über konstruktiven Input freue ich mich daher.

Ich bedanke mich bei euch!

        
Bezug
kleinste sigma-Algebra: Antwort
Status: (Antwort) fertig Status 
Datum: 23:09 Mo 03.12.2012
Autor: tobit09

Hallo Richie,


> bei der Nummer 1) bin ich mir recht sicher.
>  Ich habe folgendes ermittelt:
>  [mm]\mathfrak{A}=\{\emptyset,\ \IR^1,\ \IR^1\setminus\{0\},\ \IR^1\setminus[1,2],\ [1,2],\ \{0\}\}[/mm]
>  
> Begründung: Zunächst muss die Grundmenge und die leere
> Menge enthalten sein. Dann müssen die Mengen [mm]A_1[/mm] und [mm]A_2[/mm]
> selbst drin sein, sowie deren Komplemente. Die Vereinigung
> von den Mengen ist selbst schon wieder in den Mengen, daher
> muss man diese nicht noch mit hinzufügen.

Doch, z.B. die Vereinigung [mm] $\{0\}\cup[1,2]$ [/mm] liegt in [mm] $\mathfrak{A}$, [/mm] aber nicht in [mm] $\{\emptyset,\ \IR^1,\ \IR^1\setminus\{0\},\ \IR^1\setminus[1,2],\ [1,2],\ \{0\}\}$. [/mm]


> Nummero 2:
>  Im Grunde ist es doch dasselbe Prinzip, nicht?
>  [mm]\mathfrak{A}_\sigma=\{\emptyset, \ \IR^1, \ (-\infty,a), \ [a,\infty)\}[/mm]

Beachte: [mm] $\mathfrak{S}=\{]-\infty,a[\;|\;a\in\IR\}$ [/mm] enthält schon unendlich viele Intervalle.
Durch wiederholtes endliches oder abzählbares Vereinigen und Komplement-Bilden kommen da viele Elemente der sigma-Algebra zusammen...


Viele Grüße
Tobias

Bezug
                
Bezug
kleinste sigma-Algebra: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:00 Di 04.12.2012
Autor: Richie1401

Guten Morgen,

> Hallo Richie,
>  
>
> > bei der Nummer 1) bin ich mir recht sicher.
>  >  Ich habe folgendes ermittelt:
>  >  [mm]\mathfrak{A}=\{\emptyset,\ \IR^1,\ \IR^1\setminus\{0\},\ \IR^1\setminus[1,2],\ [1,2],\ \{0\}\}[/mm]
>  
> >  

> > Begründung: Zunächst muss die Grundmenge und die leere
> > Menge enthalten sein. Dann müssen die Mengen [mm]A_1[/mm] und [mm]A_2[/mm]
> > selbst drin sein, sowie deren Komplemente. Die Vereinigung
> > von den Mengen ist selbst schon wieder in den Mengen, daher
> > muss man diese nicht noch mit hinzufügen.
>  Doch, z.B. die Vereinigung [mm]\{0\}\cup[1,2][/mm] liegt in
> [mm]\mathfrak{A}[/mm], aber nicht in [mm]\{\emptyset,\ \IR^1,\ \IR^1\setminus\{0\},\ \IR^1\setminus[1,2],\ [1,2],\ \{0\}\}[/mm].

Ich bin doch ein Trottel. Natürlich muss noch [mm] \{0\}\cup[1,2] [/mm] mit in die [mm] $\sigma$-Algebra [/mm]

>  
>
> > Nummero 2:
>  >  Im Grunde ist es doch dasselbe Prinzip, nicht?
>  >  [mm]\mathfrak{A}_\sigma=\{\emptyset, \ \IR^1, \ (-\infty,a), \ [a,\infty)\}[/mm]

>  
> Beachte: [mm]\mathfrak{S}=\{]-\infty,a[\;|\;a\in\IR\}[/mm] enthält
> schon unendlich viele Intervalle.
>  Durch wiederholtes endliches oder abzählbares Vereinigen
> und Komplement-Bilden kommen da viele Elemente der
> sigma-Algebra zusammen...

Das mag ich nicht so richtig verstehen. Es denn etwa [mm] \mathfrak{S}=\{]-\infty,a[\;|\;a\in\IR\} [/mm] bereits die [mm] $\sigma$-Algebra? [/mm] Mein Gefühl sagt mir nein, aber deine Antwort klang so, als wäre meine Lösung falsch. Ich stehe hier ein bisschen auf dem Schlauch.

[mm] a\in\IR [/mm] ist ja ein fester Punkt. Damit liegt z.B. [mm] (-\infty,1) [/mm] in der Menge. Also muss ich das Komplement [mm] [1,\infty) [/mm] noch mit hinzufügen. So waren meine Überlegungen dazu.

>  
>
> Viele Grüße
>  Tobias


Bezug
                        
Bezug
kleinste sigma-Algebra: Antwort
Status: (Antwort) fertig Status 
Datum: 07:20 Di 04.12.2012
Autor: fred97


> Guten Morgen,
>  
> > Hallo Richie,
>  >  
> >
> > > bei der Nummer 1) bin ich mir recht sicher.
>  >  >  Ich habe folgendes ermittelt:
>  >  >  [mm]\mathfrak{A}=\{\emptyset,\ \IR^1,\ \IR^1\setminus\{0\},\ \IR^1\setminus[1,2],\ [1,2],\ \{0\}\}[/mm]
>  
> >  

> > >  

> > > Begründung: Zunächst muss die Grundmenge und die leere
> > > Menge enthalten sein. Dann müssen die Mengen [mm]A_1[/mm] und [mm]A_2[/mm]
> > > selbst drin sein, sowie deren Komplemente. Die Vereinigung
> > > von den Mengen ist selbst schon wieder in den Mengen, daher
> > > muss man diese nicht noch mit hinzufügen.
>  >  Doch, z.B. die Vereinigung [mm]\{0\}\cup[1,2][/mm] liegt in
> > [mm]\mathfrak{A}[/mm], aber nicht in [mm]\{\emptyset,\ \IR^1,\ \IR^1\setminus\{0\},\ \IR^1\setminus[1,2],\ [1,2],\ \{0\}\}[/mm].
>  
> Ich bin doch ein Trottel. Natürlich muss noch
> [mm]\{0\}\cup[1,2][/mm] mit in die [mm]\sigma[/mm]-Algebra
>  >  
> >
> > > Nummero 2:
>  >  >  Im Grunde ist es doch dasselbe Prinzip, nicht?
>  >  >  [mm]\mathfrak{A}_\sigma=\{\emptyset, \ \IR^1, \ (-\infty,a), \ [a,\infty)\}[/mm]
>  
> >  

> > Beachte: [mm]\mathfrak{S}=\{]-\infty,a[\;|\;a\in\IR\}[/mm] enthält
> > schon unendlich viele Intervalle.
>  >  Durch wiederholtes endliches oder abzählbares
> Vereinigen
> > und Komplement-Bilden kommen da viele Elemente der
> > sigma-Algebra zusammen...
>  Das mag ich nicht so richtig verstehen. Es denn etwa
> [mm]\mathfrak{S}=\{]-\infty,a[\;|\;a\in\IR\}[/mm] bereits die
> [mm]\sigma[/mm]-Algebra? Mein Gefühl sagt mir nein, aber deine
> Antwort klang so, als wäre meine Lösung falsch. Ich stehe
> hier ein bisschen auf dem Schlauch.
>  
> [mm]a\in\IR[/mm] ist ja ein fester Punkt. Damit liegt z.B.
> [mm](-\infty,1)[/mm] in der Menge. Also muss ich das Komplement
> [mm][1,\infty)[/mm] noch mit hinzufügen. So waren meine
> Überlegungen dazu.

Zu 2)

Zeige: die von [mm] \mathfrak{S} [/mm] erzeugte  [mm] \sigma [/mm] - Algebra enthält alle offenen Mengen !

Und was ist die von den offenen Mengen erzeugte [mm] \sigma [/mm] - Algebra ?

FRED

> >  

> >
> > Viele Grüße
>  >  Tobias
>  


Bezug
                        
Bezug
kleinste sigma-Algebra: Antwort
Status: (Antwort) fertig Status 
Datum: 09:41 Di 04.12.2012
Autor: tobit09


> Ich bin doch ein Trottel. Natürlich muss noch
> [mm]\{0\}\cup[1,2][/mm] mit in die [mm]\sigma[/mm]-Algebra

Und deren Komplement.


> > > Nummero 2:
>  >  >  Im Grunde ist es doch dasselbe Prinzip, nicht?
>  >  >  [mm]\mathfrak{A}_\sigma=\{\emptyset, \ \IR^1, \ (-\infty,a), \ [a,\infty)\}[/mm]
>  
> >  

> > Beachte: [mm]\mathfrak{S}=\{]-\infty,a[\;|\;a\in\IR\}[/mm] enthält
> > schon unendlich viele Intervalle.
>  >  Durch wiederholtes endliches oder abzählbares
> Vereinigen
> > und Komplement-Bilden kommen da viele Elemente der
> > sigma-Algebra zusammen...
>  Das mag ich nicht so richtig verstehen. Es denn etwa
> [mm]\mathfrak{S}=\{]-\infty,a[\;|\;a\in\IR\}[/mm] bereits die
> [mm]\sigma[/mm]-Algebra?

Nein.

> [mm]a\in\IR[/mm] ist ja ein fester Punkt.

Nein. Für jedes [mm] $a\in\IR$ [/mm] liegt [mm] $]-\infty,a[$ [/mm] in [mm] $\mathfrak{S}$. [/mm] Also z.B. [mm] $]-\infty,1[$ [/mm] und [mm] $]-\infty,2[$. [/mm]

> Damit liegt z.B.
> [mm](-\infty,1)[/mm] in der Menge. Also muss ich das Komplement
> [mm][1,\infty)[/mm] noch mit hinzufügen. So waren meine
> Überlegungen dazu.

Genauso liegt z.B. auch das Komplement von [mm] $]-\infty,2[$, [/mm] also [mm] $[2,\infty[$ [/mm] in der sigma-Algebra. Also z.B. auch [mm] $]-\infty,1[\cup[2,\infty[$. [/mm] Damit auch dessen Komplement $[1,2[$.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de