kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:50 Mo 31.01.2005 | Autor: | lady99 |
hallo leute!!wiedermal brauche ich dringend hilfe bei einigen stochastik aufgaben,es geht um ungeordnete stichproben ohne
yur[cklegen.ich hab schon versucht die formel g[r diese art von aufgaben anyuwenden,die mit n [ber k,aber irgendwie kommt das alles nicht hin.es ware nett wenn ihr euch die folgenden aufgaben anschaut, vielleicht findet ihr einige loesungsansaetse,sorri meine tastatur spinnt,
ich danke euch im voraus,fuer eure investierte yeit!!!
1.Bei einem sonderangebot werden 20 diafilme verbilligt abgegeben.bei 4 filmen ist das verfallsdatum bereits ueberschritten.man kauft 5 filme. mit welcher wahrscheinlichkeit erhaelt man
a keine verfallenen
b genau 2 verfallene
c hoestens 3 verfallene
filme
2.eine sendung von tabakpfeifen besteht aus 15 pfeifen erster wahl,10 pfeifen yweiter wahl, und 5 pfeifen dritter wahl.in der regel erkennt nur ein fachman die fehler, die yu dieser einteilung fuehren.ein kunde nimmt 6 pfeifen, die ihm gefallen heraus.mit welcher wahrscheinlichkeit enthaelt diese stichprobe
a nur pfeifen erster wahl
b 3 pfeifen erster wahl und 3 pfeifen 2. wahl
c 3 pfeifen 1. wahl , 2 pfeifen 2.wahl und eine pfeife dritter wahl
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Tach,
Also 1.) Es werden 5 Kugeln aus einer Urne mit 4 roten und 16 weißen Kugeln mit einem Griff gezogen, wäre das adäquate Problem. Rote Kugeln sind die Filme, deren Verfallsdatum bereits verfallen ist.
Die Wkt. berechnet man als Quotient von günstig durch möglich.
Die Möglichen sind bei a, b und c gleich, nämlich 20 über 5
für a) die günstigen:
- keine verfallenen, bedeutet, dass man 0 aus 4 roten zieht (also 4 über 0) und 5 von den 16 weißen Kugeln (16 über 5). Das ganze wird multipliziert, da es entlang eines Pfades des dazugehörigen Baumes verläuft.
- die Wkt wird also berechnet: P(A)= ((4 über 0)*(16 über 5) / (20 über 5))
für b) Wenn du dir die günstigen mal anguckst, kannst du feststellen, dass 4 und 16 wieder 20 und 0 und 5 wieder 5 gibt. wenn du nun ziehst, muss bei den Faktoren der günstigen n über k quasi oben immer die Gesamtzahl der Kugeln und unten immer die Gesamtzahl der gezogenen stehen.
Im Fall b wären die Günstigen daher (4 über 2)*(16 über 3)
im Fall c) ist es komplexer, da hier mehrere Fälle betrachtet werden müssen. höchstens 3 verfallene Filme bedeutet dies man zieht die Fälle: kein verfallener, ein verfallener, zwei verfallene und drei verfallene. Die günstigen der einzelnen Fälle werden dann addiert.
Aufgabe 2 ist vom selben Typ. Auch hier handelt es sich um eine Kombination, da die Reihenfolge keine Rolle spielt, quasi mit einem Griff gezogen wird.
Wandle am besten das Problem in eine Urnenaufgabe um und löse sie analog zu 1.
Viel Erfolg.
Markus
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:32 Di 01.02.2005 | Autor: | informix |
Hallo Markus,
ein paar Tipps zum Gebrauch unseres Formeleditors.
> Tach,
>
> Also 1.) Es werden 5 Kugeln aus einer Urne mit 4 roten und
> 16 weißen Kugeln mit einem Griff gezogen, wäre das
> adäquate Problem. Rote Kugeln sind die Filme, deren
> Verfallsdatum bereits verfallen ist.
> Die Wkt. berechnet man als Quotient von günstig durch
> möglich.
> Die Möglichen sind bei a, b und c gleich, nämlich 20 über
> 5
>
> für a) die günstigen:
> - keine verfallenen, bedeutet, dass man 0 aus 4 roten zieht
> (also 4 über 0) und 5 von den 16 weißen Kugeln (16 über
> 5). Das ganze wird multipliziert, da es entlang eines
> Pfades des dazugehörigen Baumes verläuft.
>
> - die Wkt wird also berechnet: P(A)= ((4 über 0)*(16 über
> 5) / (20 über 5))
$P(A) = [mm] \bruch{ \vektor{4\\0}* \vektor{16\\5}}{\vektor{20\\5}}$
[/mm]
Klick mal auf diese Formel und du erkennst, wie ich sie geschrieben habe.
unter dem Eingabefenster findest du die wichtigsten Formeln samt ihrer TeX-Schreibweise.
> für b) Wenn du dir die günstigen mal anguckst, kannst du
> feststellen, dass 4 und 16 wieder 20 und 0 und 5 wieder 5
> gibt. wenn du nun ziehst, muss bei den Faktoren der
> günstigen n über k quasi oben immer die Gesamtzahl der
> Kugeln und unten immer die Gesamtzahl der gezogenen stehen.
>
> Im Fall b wären die Günstigen daher (4 über 2)*(16 über
> 3)
>
> im Fall c) ist es komplexer, da hier mehrere Fälle
> betrachtet werden müssen. höchstens 3 verfallene Filme
> bedeutet dies man zieht die Fälle: kein verfallener, ein
> verfallener, zwei verfallene und drei verfallene. Die
> günstigen der einzelnen Fälle werden dann addiert.
>
> Aufgabe 2 ist vom selben Typ. Auch hier handelt es sich um
> eine Kombination, da die Reihenfolge keine Rolle spielt,
> quasi mit einem Griff gezogen wird.
> Wandle am besten das Problem in eine Urnenaufgabe um und
> löse sie analog zu 1.
>
> Viel Erfolg.
>
> Markus
>
>
>
|
|
|
|