www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - kommutative Gruppe
kommutative Gruppe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kommutative Gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:56 So 21.10.2007
Autor: kittie

Aufgabe
Sei G eine Gruppe mit maximal 5 Elementen.
zeige: G ist kommutativ.
Gilt dasselbe auch für eine Gruppe mit 6 Elementen?
Hinweis: Gruppentafeln

hallo zusammen,

komme hiermit nicht ganz zurecht.
auch der Hinweis Gruppentafeln zu erstellen hilft mir nicht viel weiter.
weiß nur, dass wenn die Gruppentafel symmetrisch ist, dann ist die Gruppe kommutativ.
Hab das mal mit [mm] \IZ/5\IZ [/mm] ausprobiert...naja komme aber nicht drauf wie ich das 1. geschweigedenn die 2.Frage bearbeiten soll!

hoffe auf Hilfe,

Gruß kittie

        
Bezug
kommutative Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 08:39 Mo 22.10.2007
Autor: angela.h.b.


> Sei G eine Gruppe mit maximal 5 Elementen.
>  zeige: G ist kommutativ.
>  Gilt dasselbe auch für eine Gruppe mit 6 Elementen?
>  Hinweis: Gruppentafeln

> komme hiermit nicht ganz zurecht.
>  auch der Hinweis Gruppentafeln zu erstellen hilft mir
> nicht viel weiter.

Hallo,

sicher weißt Du, daß in Gruppentafeln jedes Element in jeder Zeile und Spalte genau einmal vorkommen muß.

Nun kannst Du für die Gruppen mit 1,2 und 3 Elementen schonmal die Gruppentafeln aufstellen, Du hast wenig Auswahl.

Für die Gruppe mit 4 Elementen ist es sicher auch lehrreich, sich einmal die möglichen Gruppentafeln zurechtgefrickelt zu haben, aber es ist nicht unbedingt nötig:
Nimm an, Du hättest schon drei verschiedene Elemente 1,a,b.
Nun überlege Dir, ob  ab eins der bereits vorhandenen Elemente sein kann. Das Ergebnis wird lauten: nein.
Also ist ab ein viertes, neues Element. Kann nun [mm] ba\not=ab [/mm] sein?

Wie Du das mit der Gruppe der Ordnung 5 machst, hängt davon ab, was Ihr schon gelernt habt. Satz v. Lagrange? Ordnung v. Elementen?
Mit Gruppentafeln herumzuwurschteln fände ich hier ziemlich lästig.

> geschweigedenn die 2.Frage
> bearbeiten soll!

Hier gibt es zwei recht pragmatische Lösungen.

1. Ihr habt bereits eine Gruppe mit 6 Elementen kennengelernt, welche nicht kommutativ ist. Auf diese weist Du hin.

2. Du liest ein ganz klein bißchen in einem Algebrabuch (oder googelst), findest eine nichtkommutative Gruppe der Ordnung 6 und präsentierst diese.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de