kompl. Zahlen + inv. Unterraum < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 00:53 Mi 08.07.2009 | Autor: | Unk |
Aufgabe 1 | Bestimmen Sie alle [mm] z\in \mathbb{C} [/mm] mit [mm] z^8=1 [/mm] |
Aufgabe 2 | Sei A eine quadratische Matrix mit Koeffizienten in K und [mm] B=A^2+A.
[/mm]
Zeige: [mm] Ker(f_B) [/mm] ist ein A-invarianter Unterraum. |
Hallo,
zu der ersten Aufgabe habe ich keine rechte Idee.
Ich dachte erst, ich setze z=x+iy und dann [mm] (x+iy)^8=1, [/mm] radizieren und dann erhält man ja auch nur x+iy=1, was im Prinzip nur geht, wenn y=0 ist und x=1. Das kann es also nicht so recht sein,
Zur Aufg. 2.
[mm] Ker(f_B) [/mm] ist der Kern der linearen Abbildung, die durch B dargestellt wird, also im Prinzip Ker(B).
Zu zeigen: [mm] A(Ker(B))\subset [/mm] Ker(B).
Sei dazu [mm] 0\neq v\in [/mm] A(Ker(B)). Dann gilt:
[mm] A(A^{2}+A)v=A\cdot (A^{2}v+Av)=0, [/mm] da [mm] A^{2}v+Av=0, [/mm] denn das ist ja gerade der Ker(B), also gilt: [mm] A^{3}v+A^{2}v=0.
[/mm]
Alle diese v sind damit aber auch in Ker(B), da dafür ja gilt: [mm] A^{2}v+Av=0, [/mm] also folgt die Behauptung. Geht das so einigermaßen?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 04:14 Mi 08.07.2009 | Autor: | Marcel |
Hallo,
> Bestimmen Sie alle [mm]z\in \mathbb{C}[/mm] mit [mm]z^8=1[/mm]
> Hallo,
>
> zu der ersten Aufgabe habe ich keine rechte Idee.
> Ich dachte erst, ich setze z=x+iy und dann [mm](x+iy)^8=1,[/mm]
> radizieren und dann erhält man ja auch nur x+iy=1, was im
> Prinzip nur geht, wenn y=0 ist und x=1. Das kann es also
> nicht so recht sein,
nein, denn beim "Radizieren" machst Du es Dir zu einfach bzw. das stimmt nicht (zudem musst Du beachten, dass auch schon im Reellen [mm] $x^2=1$ [/mm] nicht [mm] $x=\sqrt{1}$ [/mm] impliziert, sondern nur $|x|=1$ bzw. [mm] $x=\pm \sqrt{1}$; [/mm] analog würde für $x [mm] \in \IR$ [/mm] die Gleichung [mm] $x^8=1$ [/mm] nur [mm] $x=\pm1$ [/mm] implizieren, und nicht [mm] $x=\sqrt[8]{1}=1$). [/mm] Du kannst Deinen Ansatz $z=x+iy$ [mm] ($x=\text{Re}(z)$ [/mm] und [mm] $y=\text{Im}(z)$, [/mm] insb. $x,y [mm] \in \IR$) [/mm] durchaus verwenden. Mit der binomischen Formel gilt dann
[mm] $$z^8=(x+iy)^8=\sum_{k=0}^8 [/mm] {8 [mm] \choose [/mm] k} [mm] x^{8-k} *(iy)^{k}\,.$$
[/mm]
Benutze weiter die Regel [mm] $(ab)^n=a^n*b^n$ [/mm] und
[mm] $\bullet$ $i^n=i\,,$ [/mm] falls $n [mm] \in \IN_0$ [/mm] bei Division durch 4 den Rest 1 läßt
[mm] $\bullet$ $i^n=-1\,,$ [/mm] falls $n [mm] \in \IN_0$ [/mm] bei Division durch 4 den Rest 2 läßt
[mm] $\bullet$ $i^n=-i\,,$ [/mm] falls $n [mm] \in \IN_0$ [/mm] bei Division durch 4 den Rest 3 läßt
[mm] $\bullet$ $i^n=1\,,$ [/mm] falls $n [mm] \in \IN_0$ [/mm] bei Division durch 4 den Rest 0 läßt
Nun kannst Du das nach Real- und Imaginärteil sortieren, so dass Du eine Gleichung der Form
[mm] $$\text{Re}(z^8)+i*\text{Im}(z^8)=1$$
[/mm]
bzw. äquivalent dazu
[mm] $$\big(\text{Re}(z^8)-1\big)+i*\text{Im}(z^8)=0+i*0\,$$
[/mm]
erhältst, woraus Du die zwei Gleichungen [mm] $\text{Re}(z^8)-1=0$ [/mm] und [mm] $\text{Im}(z^8)=0$ [/mm] erhältst. Diese Gleichungen sind dann nur noch Gleichungen in den Variablen $x,y [mm] \in \IR\,,$ [/mm] für welche Du ein geeignetes Lösungsverfahren hoffentlich kennst oder findest.
Alternativ:
Wegen der Eulerschen Identität gilt für jedes $z [mm] \in \IC\,,$ [/mm] dass [mm] $z=|z|*e^{i*\phi}$ [/mm] mit einem [mm] $\phi \in \IR$ [/mm] (oder besser: $0 [mm] \le \phi [/mm] < [mm] 2\pi\,,$ [/mm] um für $z [mm] \not=0$ [/mm] eine eindeutige Darstellung der letztstehenden Form zu haben; zudem erhält man damit auch alle Darstellungen, man beachte auch die Periodizität von [mm] $\IR \to \IC,\;\;\phi \mapsto e^{i*\phi}$). [/mm]
Nun gilt:
Aus [mm] $z^8=1$ [/mm] folgt [mm] $|z^8|=|z|^8=|1|$ [/mm] und damit [mm] $|z|=1\,$ [/mm] (wegen [mm] $|z|\ge [/mm] 0$). Damit ist [mm] $z^8=\big(|z|*e^{i*\phi}\big)^8=e^{i*8\phi}=1$ [/mm] zu lösen. Und für [mm] $y=8\phi$ [/mm] ($y [mm] \in \IR$ [/mm] wegen [mm] $\phi \in \IR$) [/mm] gilt [mm] $e^{i*y}=1$ [/mm] (genau dann), wenn [mm] $y=y_k=8*\phi_k=k*2\pi$ [/mm] ($k [mm] \in \IZ$) [/mm] und, weil wir $0 [mm] \le \phi=\phi_k=\frac{1}{8} y_k [/mm] < [mm] 2\pi$ [/mm] angenommen hatten, betrachten wir nur die $k [mm] \in \IZ$, [/mm] für die $0 [mm] \le y_k [/mm] < [mm] 8*(2\pi)\,$ [/mm] bzw. $0 [mm] \le y_k [/mm] < [mm] 16\pi\,.$ [/mm]
Wir haben also [mm] $y_k=k*2\pi$ [/mm] für [mm] $k=0,\ldots,\,7$ [/mm] zu betrachten und erhalten somit [mm] $\phi_k=\frac{1}{8}y_k=k*\frac{\pi}{4}$ ($k=0\,\ldots,\,7$), [/mm] also
[mm] $$e^{i*\frac{k*\pi}{4}},\;\;\;k=0,\ldots,7$$
[/mm]
liefert alle gesuchten Lösung quasi in Polarkoordinatendarstellung, und mit der Eulerschen Identität lassen sich diese 8 komplexe Zahlen in die algebraische Form umschreiben, also erhält man die entsprechende Darstellung mit Real- und Imaginärteil.
P.S.:
Ich demonstriere Dir die ganze Vorgehensweisen mal an einem etwas einfacheren Beispiel:
Wir suchen alle $z [mm] \in \IC$ [/mm] mit [mm] $z^3=1\,.$ [/mm]
1. Weg:
Wir schreiben $z=x+i*y$ für $x,y [mm] \in \IR\,.$
[/mm]
Dann gilt:
[mm] $$(x+iy)^3=\sum_{k=0}^3 [/mm] {3 [mm] \choose [/mm] k} [mm] x^{3-k}(iy)^k={3 \choose 0} x^3 (iy)^0+{3 \choose 1} x^2(iy)^1+{3 \choose 2} x^1 (iy)^2+{3 \choose 3}x^0(iy)^3=x^3+3x^2*i*y+3x(iy)^2+(iy)^3$$
[/mm]
[mm] $$=x^3+i*3x^2y+3xi^2y^2+i^3=\underbrace{(x^3-3xy^2)}_{=\text{Re}(z^3)}+i*\underbrace{(3x^2y-y^3)}_{=\text{Im}(z^3)}\,.$$
[/mm]
(Beachte [mm] $i^2=-1$ [/mm] und [mm] $i^3=i^2*i=-i\,.$)
[/mm]
Also [mm] $(x+iy)^3=1$ $\gdw$ $\underbrace{(x^3-3xy^2)}_{=\text{Re}(z^3)}+i*\underbrace{(3x^2y-y^3)}_{=\text{Im}(z^3)}=1+i*0$ $\gdw$ $(x^3-3xy^2-1)+i*(3x^2y-y^3)=0+i*0\,,$ [/mm] woraus die zwei Gleichungen
[mm] $$x^3-3xy^2-1=0 \text{ und }3x^2y-y^3=0$$
[/mm]
folgen. Aus [mm] $y=0\,$ [/mm] folgt dann [mm] $x=1\,$, [/mm] und für $(x,y)=(1,0)$ sind die beiden Gleichungen erfüllt.
Für $y [mm] \not=0$ [/mm] gilt [mm] $3x^2y-y^3=0 \gdw y^2=3x^2\,,$ [/mm] und dieses in die andere Gleichung eingesetzt liefert
[mm] $$x^3-3x(3x^2)-1=0$$
[/mm]
[mm] $$\gdw x^3-9x^3-1=0$$
[/mm]
[mm] $$\gdw x^3=-\frac{1}{8}$$
[/mm]
[mm] $$\gdw x=-\frac{1}{2} \;\;(\text{bea.: } x\in \IR)\,.$$ [/mm]
Mit [mm] $y^2=3x^2$ [/mm] erhalten wir dann [mm] $y=\sqrt{3}*|x|=\frac{\sqrt{3}}{2}$ [/mm] oder [mm] $y=-\sqrt{3}*|x|=-\frac{\sqrt{3}}{2}\,.$
[/mm]
Insgesamt:
[mm] $$\IL=\Big\{1+0*i,\;-\frac{1}{2}-i*\frac{\sqrt{3}}{2},\;-\frac{1}{2}+i*\frac{\sqrt{3}}{2}\Big\}=\Big\{1,\;-\frac{1}{2}-i*\frac{\sqrt{3}}{2},\;-\frac{1}{2}+i*\frac{\sqrt{3}}{2}\Big\}\,.$$
[/mm]
Und für [mm] $z^3=1$ [/mm] rechnen wir auch mal mit dem oben vorgeschlagenen alternativen Weg:
Aus [mm] $z^3=1$ [/mm] folgt [mm] $|z^3|=|1|=1$ [/mm] und wegen [mm] $|z^3|=|z|^3$ [/mm] liefert dies [mm] $|z|=1\,.$ [/mm] Es ist also
[mm] $$z^3=(|z|*e^{i*\phi})^3=(1*e^{i*\phi})^3=e^{i*3\phi}$$
[/mm]
mit $0 [mm] \le \phi [/mm] < [mm] 2\pi\,.$ [/mm] Mit [mm] $y=3\phi$ [/mm] erhalten wir analog zu oben, dass [mm] $y_0=0\,,$ $y_1=2\pi$ [/mm] und [mm] $y_2=4\pi$ [/mm] und damit [mm] $\phi_0=\frac{1}{3}*0\,,$ $\phi_1=\frac{1}{3}*2\pi$ [/mm] und [mm] $\phi_2=\frac{4}{3}*\pi$ [/mm] die Lösungen von [mm] $z^3=1$ [/mm] liefern:
Und zwar ist
[mm] $$z_0=|z_0|*e^{i*\phi_0}=1*e^0=1\,,$$
[/mm]
[mm] $$z_1=|z_1|*e^{i*\phi_1}=e^{i*\frac{2}{3}\pi}$$
[/mm]
und
[mm] $$z_2=|z_2|*e^{i*\phi_2}=e^{i*\frac{4}{3}\pi}\,.$$
[/mm]
Ferner ist nach der Eulerschen Identität
[mm] $$z_1=\cos((2/3)*\pi)+i*\sin((2/3)*\pi)$$
[/mm]
und
[mm] $$z_2=\cos((4/3)*\pi)+i*\sin((2/3)*\pi)\,.$$
[/mm]
Wegen [mm] $\cos((2/3)*\pi)=\cos((4/3)*\pi)=-\frac{1}{2}$ [/mm] und [mm] $\sin((2/3)*\pi)=-\sin((4/3)*\pi)=\frac{\sqrt{3}}{2}$ [/mm] erhalten wir die gleichen Lösungen wie bei der ersten Rechnung. (Ansonsten wäre die Alternative auch eine schlechte Alternative. )
P.P.S.:
Wenn Du die Gleichung [mm] $z^8=1$ [/mm] mithilfe der Eulerschen Identität löst, dann solltest Du Dir insbesondere die genauen Werte von [mm] $\sin(k*(\pi/4)),\,\cos(k*(\pi/4))$ ($k=0,\,\ldots,\,7$) [/mm] überlegen oder nachschlagen.
Gruß,
Marcel
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 21:13 Mi 08.07.2009 | Autor: | Unk |
Ok danke für die ausführliche Antwort.
Aber das Ganze wird dann für [mm] \omega^8 [/mm] ziemlich kompliziert. Mir wurde gesagt, dass diese Aufgabe innerhalb von 5 Minuten lösbar sein soll, und jeder der lange rumrechnet hat irgendeinen Trick übersehen. Gibt es also noch einen viel einfacheren Weg?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:34 Mi 08.07.2009 | Autor: | Marcel |
Hallo,
> Ok danke für die ausführliche Antwort.
> Aber das Ganze wird dann für [mm]\omega^8[/mm] ziemlich
> kompliziert. Mir wurde gesagt, dass diese Aufgabe innerhalb
> von 5 Minuten lösbar sein soll, und jeder der lange
> rumrechnet hat irgendeinen Trick übersehen. Gibt es also
> noch einen viel einfacheren Weg?
ich hab' Dir doch zwei Wege aufgeführt. Der Weg mit [mm] $z^8=(x+iy)^8$ [/mm] ist der umständlichere.
Einfacher geht es über Polarkoordinaten bzw. mit der Eulerschen Identität, indem man nämlich
[mm] $$z^8=1$$
[/mm]
[mm] $$\gdw \big(|z|*e^{i*\phi}\big)^8\underset{\text{weil hier }|z|=1}{=}e^{i*8\phi}=1$$
[/mm]
ausnutzt. Diese Rechnung dauert eigentlich 5, maximal 10 Minuten. Und das ganze habe ich Dir anhand der Gleichung [mm] $z^3=1$ [/mm] auch demonstriert.
Gruß,
Marcel
|
|
|
|
|
> Sei A eine quadratische Matrix mit Koeffizienten in K und
> [mm]B=A^2+A.[/mm]
> Zeige: [mm]Ker(f_B)[/mm] ist ein A-invarianter Unterraum.
> [mm]Ker(f_B)[/mm] ist der Kern der linearen Abbildung, die durch B
> dargestellt wird, also im Prinzip Ker(B).
>
> Zu zeigen: [mm]A(Ker(B))\subset[/mm] Ker(B).
> Sei dazu [mm]0\neq v\in[/mm] A(Ker(B)). Dann gilt:
Hallo,
> Zur Aufg. 2.
es gilt dann dies:
es gibt ein [mm] b\in [/mm] Kern B (also mit Bb=0) mit v=Ab.
Und nun müßte man zeigen, daß 0=Bv ist.
Gruß v. Angela
> [mm]A(A^{2}+A)v=A\cdot (A^{2}v+Av)=0,[/mm] da [mm]A^{2}v+Av=0,[/mm] denn das
> ist ja gerade der Ker(B), also gilt: [mm]A^{3}v+A^{2}v=0.[/mm]
> Alle diese v sind damit aber auch in Ker(B), da dafür ja
> gilt: [mm]A^{2}v+Av=0,[/mm] also folgt die Behauptung. Geht das so
> einigermaßen?
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 08:50 Mi 08.07.2009 | Autor: | Loddar |
Hallo Unk!
In Zukunft bitte unterschiedliche / unabhängige Fragen auch in separaten Threads (bzw. gar unterschiedlichen Unterforen) stellen.
Gruß
Loddar
|
|
|
|