kompl. integral mit cos(z)^2 < komplex < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:23 Do 08.01.2009 | Autor: | Floyd |
Hallo!
Ich hätte eine Frage bzgl. des folgenden Integrals:
[mm] \integral_{-\infty}^{\infty}{\bruch{(cos(z))^2}{z^4+1} dz}
[/mm]
ich würde das wie folgt umschreiben, bin mir aber nicht sicher, ob das die beste Möglichkeit ist:
es gilt: [mm] (cos(z))^2=\bruch{(exp(i*z)+exp(-i*z))^2}{2^2}=\bruch{(exp(2*i*z)+exp(-2*i*z))^2}{2^2}+\bruch{1}{2}=\bruch{1}{2}*(cos(2z)+1) \Rightarrow
[/mm]
[mm] \integral_{-\infty}^{\infty}{\bruch{(cos(z))^2}{z^4+1} dz}=\bruch{1}{2}*\integral_{-\infty}^{\infty}{\bruch{cos(2*z)}{z^4+1}}+\bruch{1}{2}\integral_{-\infty}^{\infty}{\bruch{1}{z^4+1}}
[/mm]
und dann das Linke mit diesem Ansatz:
[mm] \integral_{-\infty}^{\infty}{P(t)/Q(t)*cos(\alpha*t)dt}=Re(2*\pi*i*\summe_{j=1}^{n}Res(P(t)/Q(t)*exp(i*\alpha*z),z_j))
[/mm]
und das Rechte einfach über den oberen Halbkreis + reelle Achse integrieren.
Gibt es hierfür eine schneller Methode??
Besten Dank im Voraus,
mfg Floyd
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hi,
ist der Integrand
[mm] \integral_{-\infty}^{\infty}{\bruch{(cos(z))^2}{z^4+1} dz} [/mm]
eine reelle Funktion in der Variablen [mm] z\in \IR [/mm] oder ist das schon eine komplexe Funktion in der Variablen z=x+iy die entlang der reellen Achse integriert werden soll?
Im Falle des Letzteren würde ich jetzt aus dem Bauch heraus mal einfach sagen: Nenner hat NS bei [mm] \pi [/mm] /4; [mm] -\pi [/mm] /4; [mm] 3\pi [/mm] /4 und [mm] -3\pi [/mm] /4 , der [mm] cos^2 [/mm] ist analytisch, ist nicht Null an den 4 Stellen und zwei der Pole liegen links vom Integrationsweg. Warum nicht einfach zeigen dass das Rückintegral (z.B. Halbkreis) verschwindet und dann stur den Residuensatz auf die zwei Pole im Integrationsgebiet anwenden?
VG Markus
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:20 So 11.01.2009 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|
|
Man soll bessere Wege nie ausschließen, aber es erscheint mir unwahrscheinlich, daß es prinzipiell einfacher geht, als von dir aufgezeigt. Das ist eine mühsame Rechnung. Ich habe
[mm]\frac{\pi}{2} \left( \sqrt{\frac{1}{2}} + \operatorname{e}^{-\sqrt{2}} \sin \left( \sqrt{2} + \frac{\pi}{4} \right) \right)[/mm]
als Integralwert.
|
|
|
|