www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - komplexe Nullstellen
komplexe Nullstellen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

komplexe Nullstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:36 Mo 14.04.2008
Autor: dieanne

Aufgabe
a) [mm] 0=z^2-z+2 [/mm]
b) [mm] 0=z^2-3*z+2i*z+5-i (=z^2+(2i-3)*z+5-i) [/mm]

Hallo,

ich komme bei meinen Aufgaben immer mal wieder an Stellen wo ich eine komplexe Nullstelle ausrechnen muss. Leider weiß ich nicht so richtig wie das geht. Ich habe jetzt mal zwei Stellen rausgesucht wo es nötig wäre. Könnte mir das einer mal an einem von den beiden Beispielen zeigen, damit ich etwas habe woran ich mich orientieren kann. Hab im Netz nicht so das passende gefunden.

Vielen Dank!

        
Bezug
komplexe Nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:42 Mo 14.04.2008
Autor: Steffi21

Hallo, beginne ganz normal mit der p-q-Formel

a)
p=-1 und q=2

[mm] z_1_2=0,5\pm\wurzel{0,25-2}=... [/mm]

Steffi

Bezug
                
Bezug
komplexe Nullstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:15 Mo 14.04.2008
Autor: dieanne

Sorry,

hab nicht aufgeschrieben, dass ich schon angefangen hatte:

Habe p-q-Formel gemacht, dann ist die Diskriminante ja negativ und meine Idee war es -2 = -1*2 = [mm] 2i^2 [/mm] zu schreiben und dann konnte ich die Wurzel nicht mehr ausrechnen.
Konkretere Frage: Wie berechne ich [mm] \wurzel{0,25+2i^2}, [/mm] oder ist die Idee so mit der negativen Wurzel weiter zu machen falsch?

Dankeschön für eure Antworten!

Bezug
                        
Bezug
komplexe Nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:27 Mo 14.04.2008
Autor: MathePower

Hallo dieanne,

> Sorry,
>  
> hab nicht aufgeschrieben, dass ich schon angefangen hatte:
>  
> Habe p-q-Formel gemacht, dann ist die Diskriminante ja
> negativ und meine Idee war es -2 = -1*2 = [mm]2i^2[/mm] zu schreiben
> und dann konnte ich die Wurzel nicht mehr ausrechnen.
>  Konkretere Frage: Wie berechne ich [mm]\wurzel{0,25+2i^2},[/mm]
> oder ist die Idee so mit der negativen Wurzel weiter zu
> machen falsch?

Keineswegs.

Es gilt [mm]i=\wurzel{-1}[/mm] bzw. [mm]i^{2}=-1[/mm].

>  
> Dankeschön für eure Antworten!

Gruß
MathePower

Bezug
                                
Bezug
komplexe Nullstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:32 Mo 14.04.2008
Autor: dieanne

Ja, das habe ich mir schon gedacht, aber wie rechne ich die Wurzel aus? Das ist ja genau der Punkt an dem ich nicht weiter komme. Kann mir das bitte noch mal jemand erklären?

Bezug
                                        
Bezug
komplexe Nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:51 Mo 14.04.2008
Autor: MathePower

Hallo dieanne,

> Ja, das habe ich mir schon gedacht, aber wie rechne ich die
> Wurzel aus? Das ist ja genau der Punkt an dem ich nicht
> weiter komme. Kann mir das bitte noch mal jemand erklären?

Wir haben also

[mm]\wurzel{0,25+2i^{2}}=\wurzel{0.25-2}=\wurzel{-1,75}=\wurzel{\left(-1\right)*1,75}=\wurzel{-1}*\wurzel{1,75}=i*\wurzel{1,75}[/mm]

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de