www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - komplexe Potenzreihe
komplexe Potenzreihe < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

komplexe Potenzreihe: Korrektur
Status: (Frage) beantwortet Status 
Datum: 02:46 Di 17.07.2012
Autor: Quadratur

Aufgabe
Gegeben sei [mm] g(z)=\bruch{z}{(z+2i)(z-3)} [/mm]

a) In einer Umgebung von 0 kann man $g$ als Potenzreihe schreiben:

[mm] g(z)=\summe_{n=0}^{\infty}\alpha_nz^n [/mm]

Wieso stimmt diese Behauptung?

b) Welchen Konvergenzradius hat [mm] \summe_{n=0}^{\infty}\alpha_nz^n [/mm] ?

c) Berechnen Sie [mm] \alpha_0 [/mm] und [mm] \alpha_1 [/mm]

Guten Tag liebes Mathe-Team,

ich wollte fragen, ob meine Lösung umfangreich genug ist bzw. Fehler enthält.

zur a)

$g$ ist in [mm] z_0=0\in$U$ [/mm] analytisch mit [mm] B_2(0)\subset [/mm] U (Singularitäten bei -2i und 3) für die dann gilt:

[mm] g(z)=\summe_{n=0}^{\infty}\alpha_n(z-0)^n [/mm] für [mm] z\in B_2(0), [/mm]

denn [mm] g:B_2(0)\to\IC [/mm] ist offensichtlich holomorph.

zu b)

Der Konvergenzradius ist nach einem Satz aus der Vorlesung [mm] R\ge2 [/mm] (eigentlich ist der Konvergenzradius doch =2 ... müsste ich das hier noch ausrechnen?) und es gilt für alle [mm] z\in B_2(0): [/mm]

[mm] g(z)=\summe_{n=0}^{\infty}\bruch{1}{n!}g^{(n)}(0)z^n [/mm]

zu c)

[mm] \alpha_0=0 [/mm] da g(0)=0
[mm] \alpha_1=\bruch{1}{6}i, [/mm] da [mm] g'(z)=\bruch{-z^2-6i}{(z+2i)^2(z-3)^2} [/mm]

Beste Grüße,
Alex

        
Bezug
komplexe Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 07:25 Di 17.07.2012
Autor: fred97


> Gegeben sei [mm]g(z)=\bruch{z}{(z+2i)(z-3)}[/mm]
>  
> a) In einer Umgebung von 0 kann man [mm]g[/mm] als Potenzreihe
> schreiben:
>  
> [mm]g(z)=\summe_{n=0}^{\infty}\alpha_nz^n[/mm]
>  
> Wieso stimmt diese Behauptung?
>  
> b) Welchen Konvergenzradius hat
> [mm]\summe_{n=0}^{\infty}\alpha_nz^n[/mm] ?
>  
> c) Berechnen Sie [mm]\alpha_0[/mm] und [mm]\alpha_1[/mm]
>  Guten Tag liebes Mathe-Team,
>  
> ich wollte fragen, ob meine Lösung umfangreich genug ist
> bzw. Fehler enthält.
>  
> zur a)
>
> [mm]g[/mm] ist in [mm]z_0=0\in[/mm] [mm]U[/mm] analytisch mit [mm]B_2(0)\subset[/mm] U
> (Singularitäten bei -2i und 3) für die dann gilt:
>  
> [mm]g(z)=\summe_{n=0}^{\infty}\alpha_n(z-0)^n[/mm] für [mm]z\in B_2(0),[/mm]
>  
> denn [mm]g:B_2(0)\to\IC[/mm] ist offensichtlich holomorph.

Na ja.....

Wir setzen G:= [mm] \IC \setminus \{3, -2i\}. [/mm]

Dann ist g auf G holomorph. Da 0 [mm] \in [/mm] G, besagt der Satz über die Entwickelbarkeit in Potenzreihen, dass man g in einer Umgebung von 0 als Potenzreihe schreiben kann.


>  
> zu b)
>  
> Der Konvergenzradius ist nach einem Satz aus der Vorlesung
> [mm]R\ge2[/mm] (eigentlich ist der Konvergenzradius doch =2 ...
> müsste ich das hier noch ausrechnen?)



Nein, ausrechnen mußt Du das nicht, aber begründen:

Der Satz besagt, dass der Konvergenzradius mindestens so groß ist wie der Abstand von [mm] z_0=0 [/mm] zum Rand von G, der Konvergenzradius ist also [mm] \ge [/mm] 2.

Wäre er >2, so hätte g in  -2i eine hebbare Singularität. Ist das der Fall ?




>  und es gilt für
> alle [mm]z\in B_2(0):[/mm]
>  
> [mm]g(z)=\summe_{n=0}^{\infty}\bruch{1}{n!}g^{(n)}(0)z^n[/mm]
>  
> zu c)
>  
> [mm]\alpha_0=0[/mm] da g(0)=0
> [mm]\alpha_1=\bruch{1}{6}i,[/mm] da
> [mm]g'(z)=\bruch{-z^2-6i}{(z+2i)^2(z-3)^2}[/mm]

Das stimmt.

FRED

>  
> Beste Grüße,
>  Alex


Bezug
                
Bezug
komplexe Potenzreihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:25 Di 17.07.2012
Autor: Quadratur

Danke für deine Hilfe Fred,

> Na ja.....
>  
> Wir setzen G:= [mm]\IC \setminus \{3, -2i\}.[/mm]
>  
> Dann ist g auf G holomorph. Da 0 [mm]\in[/mm] G, besagt der Satz
> über die Entwickelbarkeit in Potenzreihen, dass man g in
> einer Umgebung von 0 als Potenzreihe schreiben kann.
>  

Da stimme ich dir zu.

> Nein, ausrechnen mußt Du das nicht, aber begründen:
>  
> Der Satz besagt, dass der Konvergenzradius mindestens so
> groß ist wie der Abstand von [mm]z_0=0[/mm] zum Rand von G, der
> Konvergenzradius ist also [mm]\ge[/mm] 2.
>  
> Wäre er >2, so hätte g in  -2i eine hebbare
> Singularität. Ist das der Fall ?

Nun, das ist nicht der Fall, wenn man sich den Limes für zum Beispiel [mm] it\mapsto-2i [/mm] anschaut. Dieser strebt gegen [mm] \infty. [/mm] Demnach ist $g$ in einer Umgebung von $-2i$ nicht beschränkt und damit auch nicht hebbar.

Gruß,
Alex



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de